If $ X_1,\dots,X_n $ is a random sample with $X_i \sim N(\mu,\sigma^2) $, how determinate the distribution of $S_{n-1}^2 = \frac{1}{n-1} \sum \limits_{i=1}^n (X_i - \bar{X})^2 $?
I tried to apply the method of moments as follow:
$S_{n-1}^2 = \frac{1}{n-1} \sum \limits_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \sum \limits_{i=1}^n X_i^2 - \frac{n}{n-1} \bar{X}^2 $
$$ M_{S_{n-1}^2 }(t) = E[ e^{t ( \frac{1}{n-1} \sum \limits_{i=1}^n X_i^2 - \frac{n}{n-1} \bar{X}^2 ) } ] = E[ e^{t ( \frac{1}{n-1} \sum \limits_{i=1}^n X_i^2)} e^{t(- \frac{n}{n-1} \bar{X}^2 ) } ] = E[ e^{t ( \frac{1}{n-1} \sum \limits_{i=1}^n X_i^2)} e^{(-t \frac{n}{n-1} \bar{X}^2 ) } ] $$ $$= E[ e^{t ( \frac{1}{n-1} \sum \limits_{i=1}^n X_i^2)}] E[e^{(-t \frac{n}{n-1} \bar{X}^2 ) } ] = \prod_{i=1}^n E[ e^{t ( \frac{1}{n-1} X_i^2)}] E[e^{(-t \frac{n}{n-1} \bar{X}^2 ) } ]$$
But in this point I'm lose. Should I apply the following?
$$ X_i \sim N( \mu,\sigma^2 ) \Rightarrow X_i = \sigma Z + \mu $$ $$ Y = (\sigma Z+ \mu )^2 \Rightarrow M_Y(t) = \frac{1}{\sqrt{1-2t\sigma^2}} \exp\left( \dfrac{\mu^2t}{1-2t\sigma^2}\right) , \ \text{if } \ 2\operatorname{Re}(t\sigma^2) < 1$$
Or isn't this the simplest way to determinate $S_{n-1}^2$?