Question: solve $\log x=\frac{1}{2}(x-1)$
With the following I only get one solution (apparently with $W_0$), but I can't find the solution with $W_{-1}$ this way. What is my mistake?
$$\log x=\frac{1}{2}(x-1)$$ $$\log x-\frac{1}{2}x=-\frac{1}{2}$$ $$e^{\log(x)-\frac{1}{2}x}=e^{-\frac{1}{2}}$$ $$xe^{-\frac{1}{2}x}=e^{-\frac{1}{2}}$$ $$-\frac{1}{2}xe^{-\frac{1}{2}x}=-\frac{1}{2}e^{-\frac{1}{2}}$$ $$-\frac{1}{2}x=W(-\frac{1}{2}e^{-\frac{1}{2}})$$ $$x=-2W(-\frac{1}{2}e^{-\frac{1}{2}})$$