Find all solutions of congruence $3x^2 - 2x + 9 ≡ 0 \bmod 35$:
Attempt: \begin{align} 3x^2 - 2x + 9 &\equiv 0 \bmod 35\tag{* 3} \\ 9x^2-6x+27 &\equiv 0 \bmod 35 \tag{- 26} \\ (3x-1)^2 &\equiv -26 \bmod 35 \\ \\ -26 + 35 &= 9 = 3^2 \\ \\ \iff (3x-1)^2 &\equiv 3^2 \bmod 35 \\ \iff (3x-1-3)*(3x-1+3) &\equiv 0 \bmod 35 \\ \\ \implies \underbrace{3x - 4 \equiv 0 \bmod 35}_{(a)} &\lor \underbrace{3x + 2 \equiv 0 \bmod 35}_{(b)}\\ \end{align}
Case $(a){:}\; 3x - 4 \equiv 0 \bmod 35$ $\Rightarrow 3x \equiv 4 \bmod 35$ $\Rightarrow 3x \equiv 39 \bmod 35$
$\quad\underset{ ( gcd(3,35) = 1)}{\implies} x \equiv 13 \bmod 35$
Case $(b){:}\; 3x +2 \equiv 0 \bmod 35$ $\Rightarrow 3x \equiv -2 \bmod 35$ $\Rightarrow 3x \equiv 33 \bmod 35$
$\quad\underset{ ( gcd(3,35) = 1)}{\implies} x \equiv 11 \bmod 35$
So $x = 13$ or $x = 11$.
Is it correct that way?