We have a $2\times2$ matrix with $\mathbb{Z}$ entries, $$M =\begin{bmatrix}i&j\\k&l\end{bmatrix}$$ with $\det(M) = 1$. If $(c\; d) = (a\; b)M$ then how do we show that $\gcd(a,b) = \gcd(c,d)$ ?
Multiplying out we get $ai + bk =c$ and $aj + bl = d$. assuming $a,b,c,d$ non-zero integers then by Bezout $\gcd(a,b) |c$ and $\gcd(a,b) |d$ so $\gcd(a,b) |\gcd(c,d)$
since $\det(M) = 1$ then $il - kj = 1$. by Bezout $\gcd(i,k) = \gcd(j,l) = 1$
That's all I have really, any help would be appreciated thanks.