For the fucntion $f:\mathbb{R}\rightarrow \mathbb{R}$ which are differentiable at $x=x_0$ imply $f'$ is continuous at $x=x_0$?
$f$ is differentiable at $x=x_0$ when $\forall \epsilon >0,\exists \delta>0, c\in \mathbb{R} \ s.t$ $$0<|x-x_0|<\delta \ \ imply \ \ |\frac{f(x)-f(x_0)}{x-x_0}-c|<\epsilon $$
in this case we let $c=f'(x_0)$
if $f'(x)$ is defined $\forall x \in\mathbb{R}$ from the above definition of derivative. can we prove $\forall \epsilon >0,\exists \delta>0,\ s.t$ $$|x-x_0|<\delta \ \ imply \ \ |f'(x)-f'(x_0)|<\epsilon $$?
I don't have any proof of above problem or counterexample, please help me!