For $k \in \mathbb{N}$ define $f_k \colon (1,\infty) \to \mathbb{R}$ by
$$ f_k (x) = \frac{\mathrm{e}^{k x}}{x^k} \int \limits_x^\infty t^k \mathrm{e}^{-k t} \, \mathrm{d} t \stackrel{t \,= \,x \,+ \,\frac{u}{k}}{=} \frac{1}{k} \int \limits_0^\infty \left(1 + \frac{u}{k x}\right)^k \mathrm{e}^{-u} \, \mathrm{d} u \, .$$
Using the series definition of the exponential function and the monotone convergence theorem we find
$$ \lim_{k \to \infty} k f_k(x) = \int \limits_0^\infty \lim_{k \to \infty} \left(1 + \frac{u}{k x}\right)^k \mathrm{e}^{-u} \, \mathrm{d} u = \int \limits_0^\infty \mathrm{e}^{\frac{u}{x}} \mathrm{e}^{- u} \, \mathrm{d} u = \int \limits_0^\infty \mathrm{e}^{- \left(1 - \frac{1}{x}\right)u} \, \mathrm{d} u = \frac{x}{x-1}$$
for $x > 1$ (so $c = \frac{x}{x-1}$ in your notation).
In order to compute the next term(s) of the expansion we write
$$ f_k(x) = \frac{1}{k} \int \limits_0^\infty \mathrm{e}^{k \log \left(1 + \frac{u}{k x}\right)} \mathrm{e}^{-u} \, \mathrm{d} u = \frac{1}{k} \int \limits_0^\infty \mathrm{e}^{- \left(1 - \frac{1}{x}\right)u} \exp \left[-\frac{u}{x} \left(1 - \frac{\log\left(1 + \frac{u}{k x}\right)}{\frac{u}{k x}} \right)\right] \, \mathrm{d} u $$
for $k \in \mathbb{N}$ and $x > 1$. This implies
$$ k^2 \left[\frac{x}{(x-1) k} - f_k(x)\right] = \int \limits_0^\infty \mathrm{e}^{- \left(1 - \frac{1}{x}\right)u} k \left\{1 - \exp \left[-\frac{u}{x} \left(1 - \frac{\log\left(1 + \frac{u}{k x}\right)}{\frac{u}{k x}} \right)\right]\right\} \, \mathrm{d} u$$
for $k \in \mathbb{N}$ and $x > 1$. Using elementary inequalities for the logarithm and the exponential function we can show that the expression in curly brackets is smaller than $\frac{u^2}{2 k x^2}$, so the dominated convergence theorem allows us to compute
\begin{align}
\lim_{k \to \infty} k^2 \left[\frac{x}{(x-1) k} - f_k(x)\right] &= \int \limits_0^\infty \mathrm{e}^{- \left(1 - \frac{1}{x}\right)u} \lim_{k \to \infty} k \left\{1 - \exp \left[-\frac{u}{x} \left(1 - \frac{\log\left(1 + \frac{u}{k x}\right)}{\frac{u}{k x}} \right)\right]\right\} \, \mathrm{d} u \\
&= \int \limits_0^\infty \mathrm{e}^{- \left(1 - \frac{1}{x}\right)u} \frac{u^2}{2 x^2} \, \mathrm{d} u = \frac{x}{(x-1)^3}
\end{align}
for $x > 1$ (so $d = - \frac{x}{(x-1)^3}$ in your notation).
Therefore, for $x > 1$ we have
$$f_k (x) \sim \frac{x}{(x-1)k} \left[1 - \frac{1}{(x-1)^2 k} + \mathcal{o} \left(\frac{1}{k}\right)\right]$$
as $k \to \infty$ (the order of the next term is (at least) $\frac{1}{k^3}$, as can be seen by expanding the logarithm and the exponential function further). We see that the condition $x > 1$ is required. In fact, the asymptotic behaviour at $x = 1$ is
$$ \lim_{x \to 1^+} f_k (x) = \frac{1}{k} \int \limits_0^\infty \left(1 + \frac{u}{k}\right)^k \mathrm{e}^{-u} \, \mathrm{d} u \stackrel{k \to \infty}{\sim} \sqrt{\frac{\pi}{2 k}} \, , $$
as is shown in this answer to another question.