The number of functions from $\mathbb{N}$ to itself is $|\mathbb{N}|^{|\mathbb{N}|}={\aleph_0}^{\aleph_0}=\aleph_1$. The number of functions from $\mathbb{R}$ to itself is $|\mathbb{R}|^{|\mathbb{R}|}={\aleph_1}^{\aleph_1}=\aleph_2$. Finally, the number of functions from $\mathbb{R}$ to $\mathbb{N}$ is $|\mathbb{N}|^{|\mathbb{R}|}={\aleph_0}^{\aleph_1}=\aleph_2$. My question is whether the number of functions from $\mathbb{N}$ to $\mathbb{R}$ ($|\mathbb{R}|^{|\mathbb{N}|}={\aleph_1}^{\aleph_0}$) is $\aleph_1$ or $\aleph_2$. Thanks!
EDIT:
Please note that I assume the generalised continuum hypothesis.