Define a function $f : \mathbb{S}^2\times \mathbb{S}^2\times \mathbb{S}^2\rightarrow \mathbb{R}$ by $f(p,q,r)$ to be a area of the geodesic triangle $pqr$ in the unit sphere $\mathbb{S}^2$.
(Here the area of the triangle $pqr$ is $\angle p + \angle q +\angle r -\pi$).
Question 1 : Here how can we find $$ \int_{\mathbb{S}^2\times \mathbb{S}^2\times \mathbb{S}^2 } \ f(p,q,r) d{\rm Vol}(p,q,r) $$
Question 2 : Furthermore, how can we find the following $$\int_{\mathbb{S}^2 } \ f(p_0,q_0,r) d{\rm Vol}(r) $$
Question 3 : Consider the triangle $\Delta pqr$ where the order of $p,\ q,\ r$ is positively oriented. And define $$A = \frac{ q\times p }{| q\times p| },\ B = \frac{r\times q}{|r\times q|},\ C = \frac{p\times r}{|p\times r|} $$
Note that $\angle \ (A,B) =\pi-\angle p $ so that $$ \angle (A,B) + \angle (B,C)+\angle (A,C) = 2\pi - {\rm Area}\ \Delta pqr $$
Hence ${\rm perim}\ \Delta ABC$, the sum of all side lengths in $\Delta ABC$, is equal to $2\pi - {\rm Area}\ \Delta pqr$.
Hence we want to calculate $$ \int_{(A,B,C)\in \mathbb{S}^2 \times\mathbb{S}^2\times \mathbb{S}^2}\ {\rm perim}\ \Delta ABC \ d{\rm Vol}_{ (A,B,C) }$$