i have the set $A= \{(1+\frac{1}{n})^{n} : n \in \mathbb{N}^* \}$ and the exercise ask me to find at least $2$ upper bound least equal to $\frac{14}{5}$.
My first question is, how i know $\frac{14}{5}$ is a upper bound of $A$?
My attempt is show doesn't exist $m \in \mathbb{N}^*$ such that $(1+\frac{1}{m})^{m} = \frac{14}{5}$, but i'm stuck, for the other upper bound numbers, i could reason the same way?
Thanks for suggestions