If $x_1, x_2$ are roots of $a\cos x+b\sin x+c=0$ for $x_1+x_2≠2kπ$ show that $\sin(x_1+x_2)=\frac{2ab}{a^2+b^2}$
What I've done till now:
$$a\cos x_1+b\sin x+c-(a\cos x_2+b\sin x_2+c)=0$$
$a\cos x_1+b\sin x_1-a\cos x_2-b\sin x_2=0$
$a(\cos x_1-\cos x_2)+b(\sin x_1-\sin x_2)=0$
$a(-2\sin(\frac{x_1+x_2}{2})\sin(\frac{x_1-x_2}{2}))+b(2\sin(\frac{x_1-x_2}{2})\cos(\frac{x_1+x_2}{2}))=0$
$-a\sin(\frac{x_1+x_2}{2})+b(\frac{\cos x_1+x_2}{2})=0$
That's it. Does anyone know how to solve this?
$\sin x$for $\sin x$. – Jan 17 '21 at 21:44