Give $f \in C^2(\mathbb{R})$. Prove that if $\lim\limits_{x\to+\infty}f(x)=a \in \mathbb{R}$ and $\lim\limits_{x\to+\infty}f''(x)=0$ then $\lim\limits_{x\to+\infty}f'(x)=0$.
My attempt: Get $x_0 > 0$. By using the Taylor formula to degree 2 at $x_0$ we have $$f(x)=f(x_0) + \frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2 + \mathcal{O}((x-x_0)^2).$$ Then, if $x=x_0+\frac{1}{x_0}$ we have $$f\left(x_0+\frac{1}{x_0}\right)=f(x_0)+\frac{f'(x_0)}{x_0} + \frac{f''(x_0)}{2x_0^2} + \mathcal{O}\left(\frac{1}{x_0^2}\right).$$ Let $x_0 \to +\infty$ we have $$\lim\limits_{x\to+\infty}\frac{f'(x_0)}{x_0}=0.$$ So there are two case: $\lim\limits_{x_0\to+\infty}f'(x_0)=0$ or $\lim\limits_{x_0\to+\infty}f'(x_0)=+\infty$ ( $f'(x_0)$ goes to $+\infty$ slower than $x_0$).
Question: How can I show $\lim\limits_{x_0\to+\infty}f'(x_0)=+\infty$ if my direction is correct? And if my direction is wrong, I hope you can hint the right way to me.