Can anyone double check my following epsilon delta proof.
I want to prove that the following function is continuous with an Epsilon Delta Argument. $$ f: x \in \mathbb R \mapsto (4x^2+3x+17) \in \mathbb R $$
So I started with $$\left\lvert f(x)-f(y) \right\rvert =$$ $$= \left\lvert (4x^2+3x+17) - (4y^2+3y+17) \right\rvert$$ $$= \left\lvert (4x^2+3x)-(4y^2+3y) \right\rvert$$ $$= 3\left\lvert (4x^2+x)-(4y^2+y) \right\rvert$$ $$= 3\left\lvert (\frac {4}{3}x^2+x)-(\frac {4}{3}4y^2+y) \right\rvert $$ $$= 3\left\lvert \frac {4}{3}x^2 - \frac {4}{3}y^2 + x-y \right\rvert$$ $$= 3\left\lvert \frac {4}{3}x^2 - \frac {4}{3}y^2 + x-y \right\rvert$$ (Triangel inequality)
$$\le 3 \left(\left\lvert \frac {4}{3}x^2 - \frac {4}{3}y^2 \right\rvert + \left\lvert x-y \right\rvert \right)$$
Note that $\delta \le 1$
$$\le 3 \left(\frac {4}{3}\left\lvert x^2 - y^2 \right\rvert + \delta \right)$$
$$= 3 \left(\frac {4}{3}\left\lvert (x - y) \right\rvert\left\lvert (x +y) \right\rvert + \delta \right)$$
$\delta \le 1$ $$\le 3 \left(\frac {4}{3}\left\lvert x + y \right\rvert \delta + \delta \right)$$ Adding zero in form of y - y $$= 3 \left(\frac {4}{3}\left\lvert x + y - y + y \right\rvert \delta + \delta \right)$$ $$= 3 \left(\frac {4}{3}\left\lvert x - y + 2y \right\rvert \delta + \delta \right)$$ Triangel inequality $$\le 3 \left(\frac {4}{3}(\left\lvert x - y \right\rvert +\left\lvert 2y \right\rvert) \delta + \delta \right)$$ Note that $\delta \le 1$
$$\le 3 \left(\frac {4}{3}(\delta +\left\lvert 2y \right\rvert) \delta + \delta \right)$$ $$= 4\delta^2+4\left\lvert 2y \right\rvert \delta + 3\delta $$ $$= \delta(4\delta+4\left\lvert 2y \right\rvert + 3) $$ Note that $\delta \le 1$ $$\le \delta(4 +4\left\lvert 2y \right\rvert + 3) $$ $$\le \delta(\left\lvert 8y \right\rvert + 7) = \epsilon$$ Therefore $$\delta = \frac {\epsilon}{(\left\lvert 8y \right\rvert + 7)} \;\; with \; \delta \le1$$
Thanks in advance for the help, I really appreciate it. :)