Let $A=\bigl(\begin{smallmatrix} 1&1\\1&0 \end{smallmatrix}\bigr)$. Then $A^n~?$
I saw $A^2=\left(\begin{smallmatrix} 2&1\\1&1 \end{smallmatrix}\right)$. Is there any similarity or any recurrence relation ?
Let $A=\bigl(\begin{smallmatrix} 1&1\\1&0 \end{smallmatrix}\bigr)$. Then $A^n~?$
I saw $A^2=\left(\begin{smallmatrix} 2&1\\1&1 \end{smallmatrix}\right)$. Is there any similarity or any recurrence relation ?
Find the eigenvalues of $A$ and write $A$ as $SJS^{-1}$ where $J$ is some nice matrix.
Then find $(SJS^{-1})^n$.
The point is that it is very easy to find a "recursive" relation in $J^n$.
$A^n=\bigl(\begin{smallmatrix} F_{n+1}& F_n\\F_n & F_{n-1}\end{smallmatrix}\bigr)$ where $F_n=n-$th fibonacci number.
Notice this is true for $n=1$. Now use Induction to prove my statement. You should read abot the matrix representation of fibonacci number [here] (htttps://en.wikipedia.org/wiki/Fibonacci_number)