Show there exists M such that $M||\textbf{x}||_{\infty} \le ||\textbf{x}||$.
M positive constant, $||\circ||_{\infty}$ uniform norm, and $||\circ||$ a norm on $\mathbb{R}^m$.
Show there exists M such that $M||\textbf{x}||_{\infty} \le ||\textbf{x}||$.
M positive constant, $||\circ||_{\infty}$ uniform norm, and $||\circ||$ a norm on $\mathbb{R}^m$.
$\newcommand{\norm}[1]{\Vert #1 \Vert}$ If $\Vert \cdot \Vert$ is an Euclidean norm $\Vert \cdot \Vert_2$, $$\norm{x} _\infty = \max_{1\leq i \leq m} |x_i| \leq \sqrt{x_1^2 + \cdots + x_m^2} = \norm{x}_2 $$ Therefore, $M = 1$ will suffice in this case.