0

Show there exists M such that $M||\textbf{x}||_{\infty} \le ||\textbf{x}||$.

M positive constant, $||\circ||_{\infty}$ uniform norm, and $||\circ||$ a norm on $\mathbb{R}^m$.

  • on $\mathbb{R}^m$. i just amended the question –  Jan 12 '21 at 13:31
  • 1
    This is the usual equivalence of norms in finite-dimensional vector spaces. See for example https://math.stackexchange.com/questions/599824/any-two-norms-on-finite-dimensional-space-are-equivalent? – v_lentin Jan 12 '21 at 13:34

1 Answers1

0

$\newcommand{\norm}[1]{\Vert #1 \Vert}$ If $\Vert \cdot \Vert$ is an Euclidean norm $\Vert \cdot \Vert_2$, $$\norm{x} _\infty = \max_{1\leq i \leq m} |x_i| \leq \sqrt{x_1^2 + \cdots + x_m^2} = \norm{x}_2 $$ Therefore, $M = 1$ will suffice in this case.

Hermis14
  • 2,597