-2

Im posting this problem due to inactive user

taken from here

Here is the outlines

let $f_n = \chi_{[n,n+1]}$. Then $\lim \inf f_n = 0$, and $\lim \inf \int f_n = 1$.

My question is that why $\lim \inf \int f_n = 1?$.

My attempt :Here $$f_n =\begin{cases} 1 \ \text{if }\ x\in [n,n+1] \\ 0 \ \text{if} \ x \notin [n, n+1] \end{cases}$$

I can easily see that inf $f_n=0$ and sup $f_n=1$

Im not getting why $\lim \inf \int f_n = 1?$.

jasmine
  • 14,457

1 Answers1

1

Hint:

Try calculating $\int f_n$ for a couple of values of $n$...

5xum
  • 123,496
  • 6
  • 128
  • 204