Im posting this problem due to inactive user
taken from here
Here is the outlines
let $f_n = \chi_{[n,n+1]}$. Then $\lim \inf f_n = 0$, and $\lim \inf \int f_n = 1$.
My question is that why $\lim \inf \int f_n = 1?$.
My attempt :Here $$f_n =\begin{cases} 1 \ \text{if }\ x\in [n,n+1] \\ 0 \ \text{if} \ x \notin [n, n+1] \end{cases}$$
I can easily see that inf $f_n=0$ and sup $f_n=1$
Im not getting why $\lim \inf \int f_n = 1?$.