0

What is the value of $\sqrt{(-1)^2} ;$ 1 or -1?

$\sqrt{(-1)^2} = \sqrt 1= 1 $

$\sqrt{(-1)^2} = {((-1)^2)}^{1/2} = (-1)^1 = -1$

Or is it both?

Saikai Prime
  • 1,133

2 Answers2

0

Hint

By definition, if $x\in \mathbb R$, then $$\sqrt{x^2}=|x|.$$

Arnaldo
  • 21,342
0

If $z$ is a non-zero complex number and $m,n$ are positive integers prime to each other, then $(z^{1/n})^m=(z^m)^{1/n}$

If gcd$(m,n)\neq 1$ then $(z^{1/n})^m\neq (z^m)^{1/n}$, in general.

Example: Let $z=i,m=4,n=6.$ Then $(z^{1/n})^m=(i^{1/6})^4 \qquad \qquad \;\;=\cos {4r\pi+\pi \over 3}+i\sin {4r\pi+\pi \over 3}$ where $r=0,1,2,...,5$. It has three distinct values. But $(z^m)^{1/n}=1^{1/6}=\cos {2k\pi \over 6}+i\sin {2k\pi \over 6}$, where $k=0,1,...5$. It has six distinct values.

In your question $\sqrt {(-1)^2}=\sqrt 1=1$

[$\sqrt$ is the positive square root function].

Saikai Prime
  • 1,133