I was thinking about how one might be able to define how curved a function was. I thought of two ways:
Method 1
The angle of a tangent of a function is $\arctan\left(\frac{dy}{dx}\right)$ (which we'll define as $\theta$). The rate that the angle of the tangent changes (or $\frac{d\theta}{dx}$) is, thus, $$\frac d{dx}[\theta]=\frac d{dx}\left[\arctan\left(\frac{dy}{dx}\right)\right]=\frac{d^2y}{dx^2}\arctan'\left(\frac{dy}{dx}\right)=\frac{\frac{d^2y}{dx^2}}{1+\left(\frac{dy}{dx}\right)^2}=\frac{f''(x)}{1+(f'(x))^2}$$ Hence the curvature of a function is $\frac{f''(x)}{1+(f'(x))^2}$.
Method 2
We can define the curvature of a circle $(x-a)^2+(y-b)^2=r^2$ as having curvature $\frac1r$. For each point on a function, we find $a,b,r$ that approximates the function well around that point, i.e. such that $(x-a)^2+(y-b)^2=r^2$ intersects at the point, and has the same first and second derivative as the function at that point, and calculate $\frac1r$ from there.
The first derivative of a circle is $\frac d{dx}\left[(x-a)^2+(y-b)^2\right]=\frac d{dx}r^2\Rightarrow \frac d{dx}\left[(x-a)^2\right]+\frac d{dx}\left[(y-b)^2\right]=0\Rightarrow 2\frac d{dx}\left[x-a\right](x-a)+2\frac d{dx}\left[(y-b)\right](y-b)=0\Rightarrow x-a+\frac {dy}{dx}(y-b)=\frac {dy}{dx}(y-b)=-(x-a)\Rightarrow\frac {dy}{dx}=-\frac{x-a}{y-b}$
The second derivative of a circle is $\frac d{dx}\left[\frac {dy}{dx}\right]=\frac d{dx}\left[\frac{a-x}{y-b}\right]\Rightarrow \frac{d^2y}{dx^2}=\frac{\frac d{dx}[a-x](y-b)-\frac d{dx}[y-b](a-x)}{(y-b)^2}=\frac{-(y-b)-\frac d{dx}[y-b](a-x)}{(y-b)^2}=-\frac{y-b+\frac{dy}{dx}(a-x)}{(y-b)^2}=-\frac{y-b+\frac{a-x}{y-b}(a-x)}{(y-b)^2}=-\frac{(y-b)^2+(a-x)^2}{(y-b)^3}=-\frac{r^2}{(y-b)^3}$
Thus, we have the following system of equations:
$$ \begin{cases} (x-a)^2+(y-b)^2=r^2 \\ -\frac{x-a}{y-b}=y' \\ -\frac{r^2}{(y-b)^3}=y'' \\ \end{cases} $$
To solve this equation, we first write $(y-b)^2=r^2-(x-a)^2$ and square both sides of the bottom two equations to get:
$$ \begin{cases} (y-b)^2=r^2-(x-a)^2 \\ \frac{(x-a)^2}{(y-b)^2}=\left(y'\right)^2 \\ \frac{r^4}{(y-b)^6}=\left(y''\right)^2 \\ \end{cases} $$
Now replace $(y-b)^2=r^2-(x-a)^2$ and multiply the bottom two equations by $(y-b)^2$ and $(y-b)^6$ respectively:
$$ \begin{cases} (x-a)^2=\left(y'\right)^2\left(r^2-(x-a)^2\right) \\ r^4=\left(y''\right)^2\left(r^2-(x-a)^2\right)^3 \\ \end{cases} $$
We can unpack the second equation:
$$(x-a)^2=\left(y'\right)^2\left(r^2-(x-a)^2\right)=\left(y'\right)^2r^2-\left(y'\right)^2(x-a)^2$$ $$\left(1+\left(y'\right)^2\right)(x-a)^2=\left(y'\right)^2r^2$$ $$(x-a)^2=\frac{\left(y'\right)^2}{1+\left(y'\right)^2}r^2$$
This leaves us with the equation $r^4=\left(y''\right)^2\left(r^2-(x-a)^2\right)^3$. Substituting $(x-a)^2=\frac{\left(y'\right)^2}{1+\left(y'\right)^2}r^2$ gives us
$$r^4=\left(y''\right)^2\left(r^2-\frac{\left(y'\right)^2}{1+\left(y'\right)^2}r^2\right)^3$$ $$r^4=\left(y''\right)^2\left(\frac1{1+\left(y'\right)^2}r^2\right)^3$$ $$r^4=\frac{\left(y''\right)^2}{\left(1+\left(y'\right)^2\right)^3}r^6$$ $$\frac{\left(y''\right)^2}{\left(1+\left(y'\right)^2\right)^3}r^6-r^4=0$$ $$r^4\left(\frac{\left(y''\right)^2}{\left(1+\left(y'\right)^2\right)^3}r^2-1\right)=0$$ (It seems that the quadruple root at $r=0$ is extraneous, so we can divide by $r^4$) $$\frac{\left(y''\right)^2}{\left(1+\left(y'\right)^2\right)^3}r^2-1=0$$ $$\frac{\left(y''\right)^2}{\left(1+\left(y'\right)^2\right)^3}r^2=1$$ $$r^2=\left(\frac{\left(y''\right)^2}{\left(1+\left(y'\right)^2\right)^3}\right)^{-1}$$ $$\frac1r=\sqrt{\frac{\left(y''\right)^2}{\left(1+\left(y'\right)^2\right)^3}}=\frac{y''}{\left(1+\left(y'\right)^2\right)^\frac32}$$ Hence the curvature of a function is $\frac{f''(x)}{\left(1+\left(f'(x)\right)^2\right)^\frac32}$.
The two methods that I used to define curvature ended up giving different formulae for curvature, a result I was not expecting. According to the Wikipedia article for curvature the formula from Method 2 is the generally accepted formula for finding the curvature of . The definition seems to originally come from so-called "osculating circles", which seems remarkably similar to what I did in method 2. What I have yet to find, however, is why my first method gave a different result from my second result?
(Something I found note-worthy is that the integral of $\frac{f''(x)}{\left(1+\left(f'(x)\right)^2\right)^\frac32}$ is $\frac{f'(x)}{\sqrt{1+\left(f'(x)\right)^2}}$. Note that the denominator, $\sqrt{1+\left(f'(x)\right)^2}$, is the derivative of the arc length of $f(x)$. The second formula seems somehow related to arc length and the first one isn't. Not quite sure what to make of it.)