2

For every $a \in Z$, consider the function $N:\mathbb{Z} \rightarrow \mathbb{Z}$: $$N(x)=x(2-ax)$$ Prove for every $k \in \mathbb{N}$ that $$ax \equiv1 \textrm{ mod } 10^k \implies aN(x) \equiv1 \textrm{ mod } 10^{2k}$$

Thoughts so far: We can make the following computation and find that $$aN(x)-1 = ax(2-ax)-1=-(ax-1)^2$$ which shows that $aN(x) \equiv1 \textrm{ mod } 10^k$, right? But where does $10^{2k}$ enter the picture?

mrtaurho
  • 16,103
Jacobiman
  • 1,021

1 Answers1

2

You're almost there:

$$ax-1=10^k q \implies (ax-1)^2=10^{2k} q^2 \equiv 0 \bmod 10^{2k}$$

lhf
  • 216,483