Let $X$ and $Y$ be topological spaces. Suppose that $f: X \rightarrow Y$ is a function satisfying: For every $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$.
Prove $f$ is continuous.
$\textbf{Proof:}$ Let $X$ and $Y$ be topological spaces. Suppose $f: X \rightarrow Y$ is a function satisfying $\forall A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$.
Let $a \in \overline{A}$ and then $f(a) \in \overline{f(a)}$.
Let $V \subset Y$ be open with $f(a) \in V$.
By way of contradiction, suppose $\forall \, \text{open} \, U \subset X$ with $a \in U$, $f(U) \not \subset V$.
So, $\forall a \in U$, $b \in X \backslash f^{-1}(V)$ is also $b \in U$.
Then, $a \in \overline{X \backslash f^{-1}(V)} \subset \overline{Y \backslash V}$ $\rightarrow \leftarrow$ (contradiction!) because $V \cap Y \backslash V = \emptyset$.
$\therefore f$ is continuous. $\,\, \blacksquare$