$$f(x) = \frac{\cos(bx)}{a^2 +x^2} $$ for $a, b$ $>0$
$$\hat f(\omega) = \int\limits^{\infty}_{-\infty} \dfrac{1}{2{\pi}}\cdot\dfrac{\cos\left(bx\right)}{a^2+x^2}\mathrm{e}^{-\mathrm{i}wx}\,\mathrm{d}x = \int\limits^{\infty}_{-\infty} \dfrac{\mathrm{e}^{\mathrm{i}bx}+\mathrm{e}^{-\mathrm{i}bx}}{4\pi\left(a^2+x^2\right)}\mathrm{e}^{-\mathrm{i}wx}\,\mathrm{d}x=$$
$$ \int\limits^{\infty}_{-\infty} \dfrac{\mathrm{e}^{\mathrm{i}x\left(b-w\right)}}{2\left(a^2+x^2\right)}\,\mathrm{d}x + \int\limits^{\infty}_{-\infty} \dfrac{\mathrm{e}^{-\mathrm{i}x\left(b+w\right)}}{2\left(a^2+x^2\right)}\,\mathrm{d}x$$
How should I continue from here?
I checked on wolfram alpha but the answer should not expressed with dirac function since we didn't learn it.