0

Why is $$\lim_{n\rightarrow \infty}\sqrt[n]{n!} = \infty$$

if : $$\lim_{n\rightarrow \infty}\frac{n!}{n^n} = 0 \implies n^n >n! \quad\text{for "big" n}$$

I don't understand it.

VLC
  • 2,527

1 Answers1

2

Let $a_n = n!$.

The limit $\lim \sqrt[n]{a_n}$ is related to the root test for series convergence. In this context, it is well known that if $\lim \dfrac{a_{n+1}}{a_n}$ exists, then so does $\lim \sqrt[n]{a_n}$ and they are equal. Let's compute the ratios then: $$ \lim \frac{a_{n+1}}{a_n} = \lim (n+1) = \infty $$ Therefore, $\lim \sqrt[n]{a_n}= \infty$.

lhf
  • 216,483