Convergence:
$$\sum^\infty_{n=0}\frac{\cos \left(n + \frac{1}{n^2} \right)}{n \cdot \ln \left( n^2 + 1 \right)}$$
Edit (I tried to follow the idea written by @Daniel Fischer):
$$\sum_{n=0}^{\infty} \frac{cos(n + \frac{1}{n^2})}{n\cdot ln(n^2 + 1)} = \sum_{n=0}^{\infty} \frac{cos(n)}{n \cdot ln(n^2 + 1)} + \sum_{n=0}^{\infty} \frac{cos(n + \frac{1}{n^2}) - cos(n)}{n \cdot ln(n^2 + 1)}$$
$\sum_{n=0}^{\infty} \frac{cos(n)}{n \cdot ln(n^2 + 1)}$ is convergent because of Dirichlet test and How can we sum up $\sin$ and $\cos$ series when the angles are in arithmetic progression?
$\sum_{n=0}^{\infty} \frac{cos(n + \frac{1}{n^2}) - cos(n)}{n \cdot ln(n^2 + 1)} = \sum_{n=0}^{\infty} \frac{-2 \left(sin \left( \frac{2n+\frac{1}{n^2}}{2} \right) \cdot sin \left( \frac{\frac{1}{n^2}}{2} \right) \right)}{n \cdot ln \left(n^2 + 1 \right)} = \sum_{n=0}^{\infty} \frac{-2 \left(sin \left( n+\frac{1}{2n^2} \right) \cdot sin \left( \frac{1}{2n^2} \right) \right)}{n \cdot ln \left(n^2 + 1 \right)}$
Then: $$\sum_{n=0}^{\infty} \left| \frac{-2 \left(sin \left( n+\frac{1}{2n^2} \right) \cdot sin \left( \frac{1}{2n^2} \right) \right)}{n \cdot ln \left(n^2 + 1 \right)} \right| \leq \sum_{n=0}^{\infty} \left| 2 \cdot \frac{ \frac{1}{2n^2} }{n \cdot ln \left(n^2 + 1 \right)} \right| \leq \sum_{n=0}^{\infty} \left| \frac{ 1 }{n^3 \cdot ln \left(n^2 + 1 \right)} \right| $$
For $n \geq 3$: $$\sum_{n=0}^{\infty} \left| \frac{ 1 }{n^3 \cdot ln \left(n^2 + 1 \right)} \right| \leq \sum_{n=0}^{\infty} \left| \frac{1}{n^2} \right|$$
Therefore we know that $\sum_{n=0}^{\infty} \frac{cos(n + \frac{1}{n^2}) - cos(n)}{n \cdot ln(n^2 + 1)}$ it is also convergent. Is that correct?