Is there a not identically zero, real-analytic function $f\colon\mathbb R\to\mathbb R$, which satisfies
$$f(n)=f^{(n)}(a),n\in\mathbb N \text{ or }\mathbb N^+?$$
and $a\in \mathbb R$
I saw a special case when $a=0$
I try to solve it by :
$$f(x)=e^{cx}$$ $$f(n)=e^{nc}$$ $$f^{(n)}(x)=c^ne^{cx}$$ $$f^{(n)}(a)=c^ne^{ca}$$ so $$e^{nc}=c^ne^{ca}$$ so $$c=\frac{nW(\frac{a-n}{n})}{a-n}$$
the problem is we always see n with c but the special case when a=0 give
$$c=\frac{nW(\frac{0-n}{n})}{0-n}$$ $$c=\frac{W(\frac{-1}{1})}{-1}=-W(-1)$$
I think there is no solution when $a\neq 0$
may be there is another function can solve it
Is there any solution in general?
thanks for all