Find all incongruent solutions to $x^2 \equiv 23 \pmod{77}$
Using the Chinese Remainder Theorem, I obtained $x^2 \equiv 23 \pmod{7}$ and $x^2 \equiv 23 \pmod{11}$.
For $x^2 \equiv 23 \pmod{7}$, the answers are: \begin{align} x \equiv 3 \pmod{7} \\ x \equiv 4 \pmod{7} \end{align}
For $x^2 \equiv 23 \pmod{11}$, the answers are: \begin{align} x \equiv 1 \pmod{11} \\ x \equiv 10 \pmod{11} \end{align}
But the solutions for $x^2 \equiv 23 \pmod{77}$ are: \begin{align} x \equiv 10 \pmod{77} \\ x \equiv 32 \pmod{77} \\ x \equiv 45 \pmod{77} \\ x \equiv 67 \pmod{77} \end{align}
Why are my answers not the same as the solutions? Can someone help me with this? Thanks!