1

The principal value has to be calculated for the following integral:

$$\int_{-\infty}^{\infty} \frac{\cos x}{ a^{2} - x^{2}}dx$$

for $a>0$ and $a$ is real. I set the pole to be $z=+a$ or $z=-a$, but I can't seem to get the required answer which is $π\sin(a)/a$. How can I go about solving this?

3 Answers3

1

In general if you have a rational function $R(z)$ that vanishes at $\infty$ and has simple poles $x_1,\dots,x_n$ on the real axis, then for $f(z)=R(z)e^{iz}$ we get $$\lim_{r\to\infty}\mathcal{P}\int_{-r}^r f(x)dx=2\pi i\sum_{\operatorname{Im} a>0}\operatorname{Res}_af+\pi i\sum_{k=1}^n \operatorname{Res}_{x_k}f$$ (exercise: prove this using the residue theorem) Here $\mathcal{P}\int$ denotes the Cauchy principal value.
Now apply this to the case $R(z)=\frac{1}{a^2-z^2}$ and use the fact that $\operatorname{Re}\frac{e^{ix}}{a^2-x^2}=\frac{\cos(x)}{a^2-x^2}$ for real $x$.

leoli1
  • 6,979
  • 1
  • 12
  • 36
  • what you propose as an exercise is what could be considered the answer to the question... The critical step is precisely to understand what happens to integrals in small half circumferences around $-a$ and $a$ (they do not tend to zero... otherwise you could leave all the poles out of the integration path and obtain zero for the integral. – PierreCarre Jan 05 '21 at 14:05
  • I prefer not to give full solutions but rather enough hints so that the OP is able to continue the exercise on his own. For this it is useful to mention theorems that will help solving the problem. As this is a pretty standard result from complex analysis there is no need to write out a proof here, since it (or similar formulas) can be found in most introductory complex analysis textbooks. I admit that it is probably not an easy exercise for someone with little experience with residues but as I said, this is something that can be looked up in a textbook. – leoli1 Jan 05 '21 at 14:57
0

$$I=\int_{-\infty }^{\infty } \frac{\cos x}{a^2-x^2} \, dx=2 \pi i \left(\text{res}\left(\frac{e^{i x}}{2 \left(a^2-x^2\right)},\{x,-a\}\right)+\text{res}\left(\frac{e^{i x}}{2 \left(a^2-x^2\right)},\{x,a\}\right)\right)$$ $$\text{res}\left(\frac{e^{i x}}{2 \left(a^2-x^2\right)},\{x,-a\}\right)=\underset{x\to a}{\text{lim}}\frac{e^{i x} (x-a)}{2 \left(a^2-x^2\right)}=\underset{x\to a}{\text{lim}}\frac{e^{i x} (x-a)}{2 (a+x)(a-x)}=-\frac{e^{i a}}{4 a}$$ Thus $$I=2\pi i\left(-\frac{e^{i a}}{4 a}+\frac{e^{-i a}}{4 a}\right)= i \pi \left(\frac{e^{-i a}}{2 a}-\frac{e^{i a}}{2 a}\right)=\frac{\pi}{a}\left(\frac{e^{ia}-e^{-ia}}{2i}\right)=$$ $$=\frac{\pi \sin a}{a}$$

Raffaele
  • 26,371
  • This development is not rigorous. There are non-integrable singularities at $x=\pm a$. You need to interpret the integral as a Cauchy Principal Value. – Mark Viola Jul 07 '21 at 20:36
0

Another aproach via Real methods.First factor the denominator

$$PV \,\int_{0}^{\infty} \frac{\cos x}{a^{2}-x^{2}} d x=- PV \,\int_{-\infty}^{\infty} \frac{\cos x}{(x-a)(x+a)} d x $$

then, by partial fractions

$$\frac{1}{(x-a)(x+a)}=\frac{1}{2 a}\left( \frac{1}{x-a} - \frac{1}{x+a} \right)$$

Therefore

$$\int_{-\infty}^{\infty} \frac{\cos x}{a^{2}-x^{2}} d x=-\frac{1}{2 a}\int_{-\infty}^{\infty} \frac{\cos x}{x-a} d x+\frac{1}{2 a}\int_{-\infty}^{\infty} \frac{\cos x}{x+a} d x,\tag{1} $$


To evaluate the first integral on the R.H.S. of $(1)$

$$J_1=\int_{-\infty}^{\infty} \frac{\cos x}{x-a} d x$$

Let $t+a=x\, \Rightarrow dt=dx$

$$J_1=\int_{-\infty}^{\infty} \frac{\cos \left( t+a \right)}{t} d t$$

$$J_1=\cos \left( a \right)\int_{-\infty}^{\infty} \frac{\cos \left( t \right)}{t} d t-\sin \left( a\right)\int_{-\infty}^{\infty} \frac{\sin \left( t\right)}{t} d t\,\tag{2}$$


For the second integral on the R.H.S.

$$J_2=\int_{-\infty}^{\infty} \frac{\cos x}{x+a} d x$$

Let $t-a=x\, \Rightarrow dt=dx$

$$J_2=\int_{-\infty}^{\infty} \frac{\cos ( t-a)}{t} d t$$

$$J_2=\cos \left( a \right)\int_{-\infty}^{\infty} \frac{\cos \left( t \right)}{t} d t+\sin \left( a\right)\int_{-\infty}^{\infty} \frac{\sin \left( t\right)}{t} d t,\tag{3}$$


Plugging (2) and (3) in (1) we get

$$\int_{-\infty}^{\infty} \frac{\cos a x}{b^{2}-x^{2}} d x=\frac{\sin \left( a\right)}{a}\int_{-\infty}^{\infty} \frac{\sin t}{t} d t $$

The integral on the R.H.S. is equal to $\pi$

And finally

$$\boxed{ PV\,\int_{-\infty}^{\infty} \frac{\cos x}{a^{2}-x^{2}} d x=\frac{\pi}{a} \sin (a )}$$


Ricardo770
  • 2,761
  • 1
    This development is not rigorous. There are non-integrable singularities at $x=\pm a$. You need to interpret the integral as a Cauchy Principal Value. – Mark Viola Jul 07 '21 at 20:35