Another aproach via Real methods.First factor the denominator
$$PV \,\int_{0}^{\infty} \frac{\cos x}{a^{2}-x^{2}} d x=- PV \,\int_{-\infty}^{\infty} \frac{\cos x}{(x-a)(x+a)} d x $$
then, by partial fractions
$$\frac{1}{(x-a)(x+a)}=\frac{1}{2 a}\left( \frac{1}{x-a} - \frac{1}{x+a} \right)$$
Therefore
$$\int_{-\infty}^{\infty} \frac{\cos x}{a^{2}-x^{2}} d x=-\frac{1}{2 a}\int_{-\infty}^{\infty} \frac{\cos x}{x-a} d x+\frac{1}{2 a}\int_{-\infty}^{\infty} \frac{\cos x}{x+a} d x,\tag{1} $$
To evaluate the first integral on the R.H.S. of $(1)$
$$J_1=\int_{-\infty}^{\infty} \frac{\cos x}{x-a} d x$$
Let $t+a=x\, \Rightarrow dt=dx$
$$J_1=\int_{-\infty}^{\infty} \frac{\cos \left( t+a \right)}{t} d t$$
$$J_1=\cos \left( a \right)\int_{-\infty}^{\infty} \frac{\cos \left( t \right)}{t} d t-\sin \left( a\right)\int_{-\infty}^{\infty} \frac{\sin \left( t\right)}{t} d t\,\tag{2}$$
For the second integral on the R.H.S.
$$J_2=\int_{-\infty}^{\infty} \frac{\cos x}{x+a} d x$$
Let $t-a=x\, \Rightarrow dt=dx$
$$J_2=\int_{-\infty}^{\infty} \frac{\cos ( t-a)}{t} d t$$
$$J_2=\cos \left( a \right)\int_{-\infty}^{\infty} \frac{\cos \left( t \right)}{t} d t+\sin \left( a\right)\int_{-\infty}^{\infty} \frac{\sin \left( t\right)}{t} d t,\tag{3}$$
Plugging (2) and (3) in (1) we get
$$\int_{-\infty}^{\infty} \frac{\cos a x}{b^{2}-x^{2}} d x=\frac{\sin \left( a\right)}{a}\int_{-\infty}^{\infty} \frac{\sin t}{t} d t $$
The integral on the R.H.S. is equal to $\pi$
And finally
$$\boxed{ PV\,\int_{-\infty}^{\infty} \frac{\cos x}{a^{2}-x^{2}} d x=\frac{\pi}{a} \sin (a )}$$