Lets have two recursive equations:
\begin{align} f(0) &= 2 \\ f(n+1) &= 3 \cdot f(n) + 8 \cdot n \\ \\ g(0) &= -2 \\ g(n+1) &= 3 \cdot g(n) + 12 \end{align}
We want a explicit equation for f(x) - g (x).
I firstly tried to do in manually for first $n$ numbers
\begin{array}{|c|c|c|c|} \hline n & f(n) & g(n) & f(n) - g(n) \\ \hline 0 & 2 & -2 & 4 \\ \hline 1 & 6 & 6 & 0 \\ \hline 2 & 26 & 30 & -4 \\ \hline 3 & 94 & 102 & -8 \\ \hline 4 & 306 & 318 & -12 \\ \hline \end{array}
We can deduce that $f(n) - g(n) = 4 - 4n$
But now we have to prove it.
Lets extend recursive equation $f(n)$: $$f(n) = 3^n \cdot f(0) + 8 \cdot (3^{n+1} \cdot 0 + \dots + 3^{0}(n-1))$$ for $g$ we get $$g(n) = 3^n \cdot g(0) + 12 \cdot (3^{n-1} + \dots + 3^0)$$
We can simply check this by induction but I will skip it, so the question won't be so long.
Now lets put it together:
$$ f(n) - g(n) = 2 \cdot 3^n + 8 * 3^{n-1} \cdot 0 + ... + 3^0 \cdot (n-1) + 2 \cdot 3^n - 4 \cdot 3 \cdot ( 3^{n-1}+ ... + 3^0)= \\ = 4 \cdot 3^n + 8 \cdot (3^{n-1} \cdot 0 + ... + 3^0(n-1)) - 4 \cdot (3^n + 3^{n-1} + ... + 3^1) = \\ = 8 \cdot (3^{n-1} \cdot 0 + ... + 3^0(n-1)) - 4 \cdot (3^{n-1} + ... + 3^1 + 3^0) + 4 \cdot 3^0 = \\ = 8 \cdot (3^{n-1} \cdot 0 + ... + 3^0(n-1)) - 4 \cdot (3^{n-1} + ... + 3^1 + 3^0) + 4 $$
As we can see, we already got the $4$, so to get $-4n + 4$, the rest of the equation must equal $-4n$. But this is where I don't know how to continue.
How to prove that:
$$8 \cdot (3^{n-1} \cdot 0 + \dots + 3^0(n-1)) - 4 \cdot (3^{n-1} + \dots + 3^1 + 3^0) = -4n$$
All I could do is this:
\begin{align} &8 \cdot (3^{n-1} \cdot 0 + \dots + 3^0(n-1)) - 4 \cdot (3^{n-1} + \dots + 3^1 + 3^0) = \\ &= 4 \cdot (\frac{0}{2}3^{n-1} + \dots + \frac{1}{2} \cdot (n-1) - 4 * (\frac{2}{2}3^{n-1} + \dots + \frac{2}{2}3^0) = \\ &= 4 \cdot (3^{n-1} \cdot (\frac{0- 2}{2}) + \dots + 3^0 \cdot \frac{(n-1)-1}{2}) = \\ &= 4 \cdot (-\frac{2}{2}3^{n-1} + \dots + \frac{n-2}{2}) \end{align}
And I made sum function out of it: $\sum^{n-1}_{i=0}{\frac{i - 2}{2}\cdot 3^{n-1-i}}$
What to do next? Did I go the wrong direction anywhere?
Thank you for your fast responses.