9

show that $$\sum_{n=1}^{\infty}\dfrac{\zeta_{2}}{n^4}=\zeta^2(3)-\dfrac{1}{3}\zeta(6)$$

where $$\zeta_{m}=\sum_{k=1}^{n}\dfrac{1}{k^m},\zeta(m)=\sum_{k=1}^{\infty}\dfrac{1}{k^m}$$ is true? because This result is my frend tell me.

This problem have someone research it?Thank you

my some idea: $$\zeta^3(3)=\left(\sum_{n=0}^{\infty}\dfrac{1}{(n+1)^3}\right)^2=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\dfrac{1}{(k+1)^3(n-k+1)^3}$$

and use $$\dfrac{1}{(k+1)(n-k+1)}=\dfrac{1}{n+2}\left(\dfrac{1}{k+1}+\dfrac{1}{n-k+1}\right)$$ and $$(a+b)^3=a^3+3a^2b+3ab^2+b^3$$ and $$\sum_{n=1}^{\infty}\dfrac{H_{n}}{(n+1)^5}=\dfrac{1}{2}\left(5\zeta(6)-2\zeta(2)\zeta(4)-\zeta^2(3)\right)$$ But is very ugly, someone have other nice methods? Thank you .

Asaf Karagila
  • 393,674
math110
  • 93,304
  • http://arxiv.org/pdf/1012.5192v3.pdf contains a proof. – Sungjin Kim May 21 '13 at 04:46
  • Thank you,my frend,But I don't have see any proof with this problem. – math110 May 21 '13 at 23:33
  • I believe what you have outlined is in fact the standard proof of this. See, e.g., "Explicit evaluation of Euler sums" by Borwein, Borwein and Girgensohn, where they show how to calculate this. – Kirill Aug 22 '13 at 22:24

2 Answers2

6

Consider $$f(z) = \frac{\Big(\psi_{1}(-z) \Big)^{2}}{z^{\color{red}{3}}}$$

(where $\psi_{1}(z)$ is the trigamma function) and integrate around a circle centered at the origin of complex plane of radius $N + \frac{1}{2}$ where $N$ is a positive integer.

Then $$\lim_{N \to \infty } \int_{|z| = N+\frac{1}{2}} f(z) \ dz = 0 = 2 \pi i \left(\text{Res}[f(z),0] + \sum_{n=1}^{\infty} \text{Res}[f(z),n] \right) .$$

For $ n \ge 1 $,

$$ \begin{align} f(z) &= \frac{1}{z^{3}} \Bigg[\frac{1}{(z-n)^{2}}+ \Big(H_{n}^{(2)} + \zeta(2) \Big) - 2 \Big(H_{n}^{(3)}-\zeta(3)\Big) (z-n) + \mathcal{O}\Big((z-n)^{2}\Big) \Bigg]^{2} \\ &= \frac{1}{z^{3}} \Bigg(\frac{1}{(z-n)^{4}} + \frac{2 H_{n}^{(2)}+2 \zeta(2)}{(z-n)^{2}} - \frac{4H_{n}^{(3)} -4 \zeta(3)}{z-n} + \mathcal{O}(1) \Bigg) \end{align}$$

where I'm using the notation $$H_{n}^{(m)} = \sum_{k=1}^{n} \frac{1}{k^{m}} .$$

Therefore,

$$ \begin{align} \text{Res} [f(z),n] &= \text{Res} \Bigg[ \frac{1}{z^{3}} \frac{1}{(z-n)^{4}},n \Bigg] + \text{Res} \Bigg[ \frac{1}{z^{3}} \frac{2 H_{n}^{(2)} + 2 \zeta(2)}{(z-n)^{2}},n\Bigg] + \text{Res} \Bigg[ \frac{4 \zeta(3) - 4 H_{n}^{(3)}}{z-n},n\Bigg] \\ &= -\frac{10}{n^{6}} - \frac{6 H_{n}^{(2)}}{n^{4}} - \frac{6 \zeta(2)}{n^{4}} + \frac{4 \zeta(3)}{n^{3}}- \frac{4 H_{n}^{(3)}}{n^{3}} . \end{align}$$

And at the origin,

$$ \begin{align} f(z) &= \frac{1}{z^{3}} \Big( \frac{1}{z^{2}} + \zeta(2) + 2 \zeta(3) z + 3 \zeta(4) z^{2} + 4 \zeta(5) z^{3} + 5 \zeta(6)z^{4} + \mathcal{O}(z^{5}) \Big)^{2} \\ &= \frac{1}{n^{7}} + \frac{2 \zeta(3)}{z^{5}} + \frac{2 \zeta(3)}{z^{4}} + \frac{6 \zeta(4) + \zeta^{2}(z)}{z^{3}} + \frac{9 \zeta(5) + 4 \zeta(2) \zeta(3)}{z^{2}} \\ &+ \frac{10 \zeta(6) + 6 \zeta(2) \zeta(4)+ 4 \zeta^{2}(3)}{z} + \mathcal{O}(1) . \end{align}$$

So

$$ \text{Res}[f(z),0] = 10 \zeta(6) + 6 \zeta(2) \zeta(4)+ 4 \zeta^{2}(3) .$$

Summing up all the residues we have

$$ -10 \zeta(6) - 6 \sum_{n=1}^{\infty} \frac{H_{n}^{(2)}}{n^{4}} - 6 \zeta(2) \zeta(4) + 4 \zeta^{2}(3) - 4 \sum_{n=1}^{\infty} \frac{H_{n}^{(3)}}{n^{3}} + 10 \zeta(6) + 6 \zeta(2) \zeta(4) + 4 \zeta^{2}(3) =0$$

$$ \implies 6 \sum_{n=1}^{\infty} \frac{H_{n}^{(2)}}{n^{4}} = 8 \zeta^{2}(3) - 4 \sum_{n=1}^{\infty} \frac{H_{n}^{(3)}}{n^{3}} .$$

In general, $$\sum_{n=1}^{\infty} \frac{H_{n}^{(m)}}{n^{m}} = \frac{\zeta^{2}(m) + \zeta(2m)}{2} .$$

Therefore,

$$ \begin{align} \sum_{n=1}^{\infty} \frac{H_{n}^{(2)}}{n^{4}} &= \frac{1}{6} \Bigg( 8 \zeta^{2}(3)- 4 \Big( \frac{\zeta^{2}(3)+\zeta(6)}{2} \Big) \Bigg) \\ &= \zeta^{2}(3) - \frac{\zeta(6)}{3} . \end{align}$$

1

I introduced an integral representation for a more general case in a previous problem

$$ B(p,q) = \sum_{k=1}^{\infty} \dfrac{H_k^{(p)}}{k^q}=\frac{(-1)^q}{\Gamma(q)}\int_{0}^{1}\!{\frac {\left(\ln\left(u\right)\right)^{q-1}{Li_{p}(u)} }{ u\left( u-1 \right)}}{du} $$

in which your sum can have the form

$$ B(2,4) = \sum_{k=1}^{\infty} \dfrac{H_k^{(2)}}{k^4}=\frac{1}{\Gamma(4)}\int_{0}^{1}\!{\frac {\left(\ln\left(u\right)\right)^{3}{Li_{2}(u)} }{ u\left( u-1 \right)}}{du}. $$

Try to manipolate this integral. See a related problem.