Suppose that $f:(0,\infty) \rightarrow \mathbb{R}$ satisfies $f(x)-f(y)=f\left(\dfrac{x}{y}\right)$ for all $x,y \in (0,\infty)$ and $f(1)=0.$
$(a)$. Prove that $f$ is continuous on $(0,\infty)$ if and only if $f$ is continuous at $1$
$(b)$. Prove that $f$ is differentiable on $(0,\infty)$ if and only if $f$ is differentiable at $1$
$(c).$ Prove that $f$ is differentiable at $1$, then $f^{\prime}(x)=\dfrac{f^{\prime}(1)}{x}$ for all $x\in (0,\infty)$.
$\underline {Attempt}$
$(a).$ If $f$ is continuous on $(0,\infty)$ then $f$ is also continuous at $1$.
$\space$ $ \space $$\space$ $\space$ If $f$ is continuous at $1,$ We have $$ \forall \space \varepsilon \space \exists \space \delta \space\text{such that} \space|x-1|<\delta \space \text{whenever} \space|f(x)-f(1)|=|f(x)|< \varepsilon $$
$\space$ $ \space $$\space$ $\space$ Now let $a \in (0,\infty)$ and if $|x-a|<\delta_1 $,
$$|f(x)-f(a)|=\left|f\left(\dfrac{x}{a}\right)\right| <\varepsilon$$
$\therefore$ $f$ is continuous on $(0,\infty)$ if and only if $f$ is continuous at $1$
$(b).$ If $f$ is differentiable $(0,\infty)$ then $f$ is also differentiable at $1$.
$\space$ $ \space $$\space$ $\space$ If $f$ is differentiable at $1$, We have $$f^{\prime}(1)=\lim_{h\to 0 } \frac{f(1+h)-f(1)}{h}$$
$\space$ $ \space $$\space$ $\space$ set $h=\dfrac{t}{x}$ implies when $h \to 0$, $t \to 0$ so $$f^{\prime}(1)=\lim_{h\to 0 } \frac{f(1+h)}{h}=\lim_{t\to 0 } \frac{f\left(1+\dfrac{t}{x}\right)}{\dfrac{t}{x}}=x\lim_{t\to 0} \frac{f(x+t)-f(x)}{t} $$
$\therefore$ $f$ is differentiable on $(0,\infty)$ if and only if $f$ is differentiable at $1$
$(c).$ If $f$ is differentiable at $1$,We have $$f^{\prime}(1)=\lim_{h\to 0 } \frac{f(1+h)-f(1)}{h}$$ $\space$ $ \space $$\space$ $\space$ this implies, $$f^{\prime}(1)=\lim_{h\to 0 } \frac{f(1+h)}{h}=x\lim_{t\to 0} \frac{f(x+t)-f(x)}{t}=xf^{\prime}(x) $$
I referred Functional equation $f(xy)=f(x)+f(y)$ and differentiability and Show a function for which $f(x + y) = f(x) + f(y) $ is continuous at zero if and only if it is continuous on $\mathbb R$ but I don't know exactly my attempt is correct or not if not give some advises.
Thank you!