Using this
$$\cos(2n+1)x=2^{2n}\cos^{2n+1}x+\cdots+(-1)^n\cos x$$
If $\cos(2n+1)x=-1=\cos\pi\implies(2n+1)x=(2r+1)\pi$
$\implies x=\dfrac{(2r+1)\pi}{2n+1}; 0\le r\le2n$
So, the roots of $$2^{2n}c^{2n+1}+\cdots+(-1)^nc+1=0$$ are $\cos\dfrac{(2r+1)\pi}{2n+1}; 0\le r\le2n$
Using Vieta's Formulas
$$\prod_{r=0}^{2n}\cos\dfrac{(2r+1)\pi}{2n+1}=-\dfrac1{2^{2n}}$$
Exclude $r=n$
$$\prod_{r=0,\ne n}^{2n}\cos\dfrac{(2r+1)\pi}{2n+1}=\dfrac1{2^{2n}}$$
Now if $r_1+r_2=2n+1,\cos\dfrac{(2r_1+1)\pi}{2n+1}=\cos\dfrac{(2r_2+1)\pi}{2n+1}$
$$\implies\prod_{r=0}^{n-1}\cos^2\dfrac{(2r+1)\pi}{2n+1}=\dfrac1{2^{2n}}$$
Now $\dfrac{(2r+1)\pi}{2n+1}>\dfrac\pi2\iff4r+2>2n+1\iff r>\dfrac{2n-1}4$
So, if $m=n-1-\left\lceil \dfrac{2n-1}4\right\rceil$
$$\implies(-1)^m\prod_{r=0}^{n-1}\cos\dfrac{(2r+1)\pi}{2n+1}=\dfrac1{2^n}$$
If $2r+1>\dfrac{2n+1}2, 0>\cos\dfrac{(2r+1)\pi}{2n+1}=-\cos\dfrac{2(n-r)\pi}{2n+1}$
$$\implies\prod_{m=1}^n\cos\dfrac{m\pi}{2n+1}=\dfrac1{2^n}$$