Let $p,q$ be prime numbers , find all the solutions to the congruence $x^2\equiv (p+q)x \pmod{pq}$
Attempt:
$$x^2\equiv (p+q)x \pmod{pq} \Longrightarrow \cases {x^2\equiv (p+q)x \pmod{p}\\x^2\equiv (p+q)x \pmod{q}} $$
For $\pmod{p}$
$$x^2\equiv (p+q)x \pmod{p} \Longrightarrow x(x-(p+q))\equiv 0 \pmod{p}$$
Because $p$ is prime number then we can write :
$$x\equiv 0 \pmod{p}\space\space\space(1)$$ and $$x\equiv (p+q) \pmod{p}\Longrightarrow x\equiv q \pmod{p}\space\space\space(2)$$
For $\pmod{q}$
$$x^2\equiv (p+q)x \pmod{q} \Longrightarrow x(x-(p+q))\equiv 0 \pmod{q}$$
Because $q$ is prime number then we can write :
$$x\equiv 0 \pmod{q}\space\space\space(3)$$ and $$x\equiv (p+q) \pmod{q}\Longrightarrow x\equiv p \pmod{q}\space\space\space(4)$$
Now, we can say because $(1)$ and $(3)$ that $x\equiv 0 \pmod{pq}$.
There are more solutions using $(2)$ and $(4)$ but I cannot see a legal way to solve them.
Edit: note that $p,q$ can(not must) be equal to one another, which I think is another case for a solution.