I'm trying to prove the theorem, that states, that if I have a normed vector space with a finite dimension (so that each vector I can express as a linear combination $$ \vec{v}=a\vec{e}_1+b\vec{e}_2+c\vec{e}_3+\cdots+q\vec{e}_n $$ where the vectors $\{\vec{e_k}\}_{k=1}^{n} $ are linearly independent), and I have some norm defined there, and I have a sequence of vectors $$ \{\vec{v_k}\}_{k=1}^{\infty} $$ that converges in norm to some vector $\vec{V}$, then it also converges to it Point-wisely, that is, if $$\vec{v}_k=a_k\vec{e}_1+b_k\vec{e}_2+c_k\vec{e}_3+\cdots+q_k\vec{e}_n, $$ and $$\vec{V}=a\vec{e}_1+b\vec{e}_2+c\vec{e}_3+\cdots+q\vec{e}_n, $$ and $$\lim_{k\rightarrow\infty} \lVert\vec{v}_k-\vec{V}\rVert=0,$$ then also $$\begin{align*} \lim_{k\rightarrow\infty} |a_k-a|&=0,\\ \lim_{k\rightarrow\infty} |b_k-b|&=0,\\ &\,\vdots\\ \lim_{k\rightarrow\infty} |q_k-q|&=0. \end{align*}$$
Thanks.