I did the following demonstration: Would it be possible to give me a feedbak if i'm to wrong.
Be $A$ an integral domain and $x,y \in A$, then:
$x\sim y \Rightarrow$ $\exists u \in \mathfrak{U}(A)$ such that $y=xu \Rightarrow x \mid y$ and $y\mid x$. So there's $a,b \in A$ such that $xa=y$ and $yb=x$.
$1º$ case: $x=0.$
$x=0$ and $xa=y \Rightarrow y=0.$
Take $u=1 \in \mathfrak{U}(A)$ and then, $0=0\cdot 1$, or $y=xu$.
$2º$ case: $a\neq 0$.
$xa=y$ and $yb=x$.
$\Rightarrow xab=x$
$\Rightarrow x(ab-1)=0$
$\Rightarrow ab=1$
$\Rightarrow a$ is invertible.
Taking $u=a \in \mathfrak{U}(A)$ and then $xu=y$. By hypothesis, $y=xu$, $u \in \mathfrak{U}(A)$. It follows that $x\mid y.$ In addition, from $y=xu$, we have $y \cdot u^{-1}=x$ and then $ y\mid x$.
So, $x\sim y$.
$\square$