For any real $ x>0 $ we have :
$$ \Gamma\left(x\right)=\displaystyle\int_{0}^{+\infty}{z^{x-1}\mathrm{e}^{-z}\,\mathrm{d}z} $$
Thus, if $ u \in \left[0,+\infty\right[ $, and for any $ y>0 $ we have :
\begin{aligned} \Gamma\left(x\right)u^{y-1}\mathrm{e}^{-u}&=u^{y-1}\mathrm{e}^{-u}\displaystyle\int_{0}^{+\infty}{z^{x-1}\mathrm{e}^{- z}\,\mathrm{d}z} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left\lbrace\begin{matrix}z =u t\ \\
\mathrm{d}z =u\,\mathrm{d}t\end{matrix}\right.\\ \iff \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Gamma\left(x\right)u^{y-1}\mathrm{e}^{-u}&=u^{x+y-1}\mathrm{e}^{-u}\displaystyle\int_{0}^{+\infty}{t^{x-1}\mathrm{e}^{-u t}\,\mathrm{d}t} \\ \Longrightarrow\displaystyle\int_{0}^{+\infty}{\Gamma\left(x\right)u^{y-1}\mathrm{e}^{-u}\,\mathrm{d}u}&=\displaystyle\int_{0}^{+\infty}{u^{x+y-1}\mathrm{e}^{-u}\displaystyle\int_{0}^{+\infty}{t^{x-1}\mathrm{e}^{-u t}\,\mathrm{d}t}\,\mathrm{d}u}\\ \iff\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Gamma\left(x\right)\Gamma\left(y\right)&=\displaystyle\int_{0}^{+\infty}{t^{x-1}\displaystyle\int_{0}^{+\infty}{u^{x+y-1}\mathrm{e}^{-\left(1+t\right)u}\,\mathrm{d}u}\,\mathrm{d}t} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left\lbrace\begin{matrix}\tau =\left(1+t\right)u \\
\mathrm{d}u =\frac{\mathrm{d}\tau}{1+t}\ \ \ \ \ \ \ \ \ \ \ \end{matrix}\right.\\ &=\displaystyle\int_{0}^{+\infty}{\displaystyle\frac{t^{x-1}}{\left(1+t\right)^{x+y}}\displaystyle\int_{0}^{+\infty}{\tau^{x+y-1}\mathrm{e}^{-\tau}\,\mathrm{d}\tau}\,\mathrm{d}t}\\ &=\Gamma\left(x+y\right)\displaystyle\int_{0}^{+\infty}{\displaystyle\frac{t^{x-1}}{\left(1+t\right)^{x+y}}\,\mathrm{d}t} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left\lbrace\begin{matrix}\varphi =\frac{1}{1+t}\ \ \\
\mathrm{d}t =-\frac{\mathrm{d}\varphi}{\varphi^{2}}\end{matrix}\right. \\\Gamma\left(x\right)\Gamma\left(y\right)&=\Gamma\left(x+y\right)\displaystyle\int_{0}^{1}{\displaystyle\frac{1}{\varphi^{2}}\left(\displaystyle\frac{1}{\varphi}-1\right)^{x-1}\varphi^{x+y}\,\mathrm{d}\varphi}\\ \iff\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \displaystyle\frac{\Gamma\left(x\right)\Gamma\left(y\right)}{\Gamma\left(x+y\right)}&=\displaystyle\int_{0}^{1}{\varphi^{y-1}\left(1-\varphi\right)^{x-1}\,\mathrm{d}\varphi}\end{aligned}