Let
$$
x = 142^{381} \pmod{773}.
$$
Since $773$ is prime, by Fermat's little theorem we have
$$
142^{772} = 1 \pmod{773}.
$$
Therefore, either
$$
142^{386} = 1 \pmod{773}
$$
or
$$
142^{386} = -1 \pmod{773}.
$$
We can distinguish the two cases using Euler's criterion. To that end, we need to compute the Legendre symbol
$$
\left(\frac{142}{773}\right) = \left(\frac{71}{773}\right)\left(\frac{2}{773}\right)
$$
where we used the fact that Legendre symbol is a completely multiplicative function. Next, we use the law of quadratic reciprocity to find
$$
\left(\frac{71}{773}\right) = \left(\frac{773}{71}\right) = \left(\frac{710 + 63}{71}\right) = \left(\frac{63}{71}\right)
$$
and similarly
$$
\left(\frac{63}{71}\right) = -\left(\frac{71}{63}\right) = -\left(\frac{8}{63}\right) = -\left(\frac{2}{63}\right)\left(\frac{2}{63}\right)\left(\frac{2}{63}\right).
$$
Substituting, we see that
$$
\left(\frac{142}{773}\right) = -\left(\frac{2}{63}\right)\left(\frac{2}{63}\right)\left(\frac{2}{63}\right)\left(\frac{2}{773}\right).
$$
Now, using the property known as the second supplement to the law of quadratic reciprocity
$$
\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}
$$
we find
$$
\left(\frac{2}{773}\right) = -1 \\
\left(\frac{2}{63}\right) = 1.
$$
Therefore,
$$
\left(\frac{142}{773}\right) = 1
$$
and so $142$ is a quadratic residue. Consequently,
$$
142^{386} = 1 \pmod{773}.
$$
Now, substituting $x$ and partial results listed in the question
$$
x \cdot 142^5 = 1 \pmod{773} \\
x \cdot 142^2 \cdot 142^3 = 1 \pmod{773} \\
x \cdot 66 \cdot 96 = 1 \pmod{773} \\
x \cdot 152 = 1 \pmod{773}.
$$
Thus, we see that $x$ is the multiplicative inverse of $152$ modulo $773$. We can find it by computing Bézout's coefficients using Euler's algorithm
$$
152 \cdot 178 + 773 \cdot (-35) = 1
$$
and so we see that
$$
178 \cdot 152 = 1 \pmod{773}.
$$
Therefore,
$$
x = 178 \pmod{773}.
$$