Consider the Taylor series (about $0$) for the function $\dfrac{1}{1+t^2}$. We first consider the function:
$$f(x)=\dfrac{1}{1+x}=(1+x)^{-1}$$
We find that $f^n(x)=(-1)^nn!(1+x)^{-(1+n)}$. The nth order Taylor polynomial $P_n(x)$is thus $\sum_{k=0}^n(-x)^k$ , and the remainder term $R_n(x)$ is $ \dfrac{f^{n+1}(c)x^{n+1}}{n+1!}$= $\dfrac{(-x)^{n+1}}{(1+c)^{n+2}}$, for some $c$ in $(0,x).$
We therefore have, by Taylor's theorem:
$$f(x)=\dfrac{1}{1+x}=\sum_{k=0}^n(-x)^k+\dfrac{(-x)^{n+1}}{(1+c)^{n+2}}$$ The substitution $x=t^2$ results in: $$\dfrac{1}{1+t^2}=\sum_{k=0}^n(-t^2)^k+\dfrac{(-t^2)^{n+1}}{(1+c)^{n+2}}$$ However, the top answer of: Why is $\arctan(x)=x-x^3/3+x^5/5-x^7/7+\dots$?, writes : $$\dfrac{1}{1+t^2}=\sum_{k=0}^n(-t^2)^k+\dfrac{(-t^2)^{n+1}}{1+t^2}$$.
I am struggling to see how can we use the fact that $1<1+c<1+t^2$ ,(the only information we have about c), to reach this result, starting from $\dfrac{(-t^2)^{n+1}}{(1+c)^{n+2}}$.