The present value can be written as an infinite sum:
\begin{align}PV \,&=\, \color{red}{44000} + \color{blue}{\frac{44000}{1.027}}+\color{green}{\frac{44000}{1.027^2}} +\color{purple}{\frac{44000}{1.027^3}} + \cdots + \frac{44000}{1.027^8}\\\\ &+\,\color{red}{\frac{45000}{1.027^9}} +\color{blue}{\frac{45000}{1.027^{10}}} +\color{green}{\frac{45000}{1.027^{11}}} +\color{purple}{\frac{45000}{1.027^{12}}}+ \cdots +\frac{45000}{1.027^{17}}\\\\
&+\,\color{red}{\frac{46000}{1.027^{18}}} +\color{blue}{\frac{46000}{1.027^{19}}} +\color{green}{\frac{46000}{1.027^{20}}} +\color{purple}{\frac{46000}{1.027^{21}}}+ \cdots +\frac{46000}{1.027^{26}}\\\\
&+ \,\,\,\, \cdots \\\\
\end{align}
We split this sum into $9$ sums, grouping terms as follows:
\begin{align}
PV \,&=\, \color{red}{44000} + \color{red}{\frac{45000}{1.027^9}} + \color{red}{\frac{46000}{1.027^{18}}} + \cdots \\\\
&+ \, \color{blue}{\frac{44000}{1.027}} + \color{blue}{\frac{45000}{1.027^{10}}} + \color{blue}{\frac{46000}{1.027^{19}}} + \cdots \\\\
&+ \, \color{green}{\frac{44000}{1.027^2}} + \color{green}{\frac{45000}{1.027^{11}}} + \color{green}{\frac{46000}{1.027^{20}}} + \cdots \\\\
&+ \, \color{purple}{\frac{44000}{1.027^3}} + \color{purple}{\frac{45000}{1.027^{12}}} + \color{purple}{\frac{46000}{1.027^{21}}} + \cdots \\\\
&\phantom{+} \qquad \vdots \\\\
&+ \, \frac{44000}{1.027^8} + \frac{45000}{1.027^{17}}+\frac{46000}{1.027^{26}} + \cdots
\\\\ \tag{1}\end{align}
Each of these series is what is known as an arithmetico-geometric series. In general, series of this form can be reduced to a geometric series by multiplying by the common ratio and subtracting the result. In one of my previous answers, I've described this reduction, for a simpler arithmetico-geometric series.
In this case, dividing both sides of $(1)$ by $1.027^{9}$ solves the problem:
\begin{align}
\frac{PV}{1.027^9} \,&=\, \color{red}{\frac{44000}{1.027^9}} + \color{red}{\frac{45000}{1.027^{18}}} + \color{red}{\frac{46000}{1.027^{27}}} + \color{red}{\frac{47000}{1.027^{36}}} + \cdots \\\\
&+ \, \color{blue}{\frac{44000}{1.027^{10}}} + \color{blue}{\frac{45000}{1.027^{19}}} + \color{blue}{\frac{46000}{1.027^{28}}} + \color{blue}{\frac{47000}{1.027^{37}}} + \cdots \\\\
&+ \, \color{green}{\frac{44000}{1.027^{11}}} + \color{green}{\frac{45000}{1.027^{20}}} + \color{green}{\frac{46000}{1.027^{29}}} + \color{green}{\frac{47000}{1.027^{38}}} + \cdots \\\\
&+ \, \color{purple}{\frac{44000}{1.027^{12}}} + \color{purple}{\frac{45000}{1.027^{21}}} + \color{purple}{\frac{46000}{1.027^{30}}} + \color{purple}{\frac{47000}{1.027^{39}}} + \cdots \\\\
&\phantom{+} \qquad \vdots \\\\
&+ \, \frac{44000}{1.027^{17}} + \frac{45000}{1.027^{26}} + \frac{46000}{1.027^{35}}+\frac{47000}{1.027^{44}} + \cdots \\\\ \tag{2}
\end{align}
Subtracting $(2)$ from $(1)$ gives:
\begin{align}
PV - \left(\frac{PV}{1.027^9} \right) \, &= \, \color{red}{44000} + \left(\, \color{red}{\frac{1000}{1.027^9}} + \color{red}{\frac{1000}{1.027^{18}}} + \color{red}{\frac{1000}{1.027^{27}}} + \cdots \,\right)\\\\
&+\, \color{blue}{\frac{44000}{1.027}} + \left(\, \color{blue}{\frac{1000}{1.027^{10}}} + \color{blue}{\frac{1000}{1.027^{19}}} + \color{blue}{\frac{1000}{1.027^{28}}} + \cdots \,\right)\\\\
&+\, \color{green}{\frac{44000}{1.027^2}} + \left(\, \color{green}{\frac{1000}{1.027^{10}}} + \color{green}{\frac{1000}{1.027^{19}}} + \color{green}{\frac{1000}{1.027^{28}}} + \cdots \,\right)\\\\
&+\, \color{purple}{\frac{44000}{1.027^3}} + \left(\, \color{purple}{\frac{1000}{1.027^{10}}} + \color{purple}{\frac{1000}{1.027^{19}}} + \color{purple}{\frac{1000}{1.027^{28}}} + \cdots \,\right)\\\\
&\phantom{+} \qquad \vdots \\\\
&+ \frac{44000}{1.027^8} + \left(\,\frac{1000}{1.027^{17}} + \frac{1000}{1.027^{26}} + \frac{1000}{1.027^{35}} + \cdots \,\right)\\\\ \tag{3}
\end{align}
Each of the nine series in parentheses on the right hand side of $(3)$ are infinite geometric series with common ratio $1/1.027^9 \approx 0.786803$. If the
first term is $a$, and the common ratio is $r$, then the sum of each infinite geometric series is $$a + ar + ar^2 + \cdots = \frac{a}{1 - r}\tag{4}$$
Applying $(4)$ to each of the nine infinite geometric series on the right hand side of $(3)$ gives:
\begin{align}
PV \left(1 - \frac{1}{1.027^9}\right) \, &=\, \left(\color{red}{44000} + \color{red}{\frac{1000000000000000000000000000000}{270966174450725282733813987}}\right)\\\\
&+\, \left(\color{blue}{44000} + \color{blue}{\frac{1000000000000000000000000000000}{270966174450725282733813987}}\right)\left(\color{blue}{\frac{1}{1.027}}\right)\\\\
&+\, \left(\color{green}{44000} + \color{green}{\frac{1000000000000000000000000000000}{270966174450725282733813987}}\right)\left(\color{green}{\frac{1}{1.027^2}}\right)\\\\
&+\, \left(\color{purple}{44000} + \color{purple}{\frac{1000000000000000000000000000000}{270966174450725282733813987}}\right)\left(\color{purple}{\frac{1}{1.027^3}}\right)\\\\
&\phantom{+} \qquad \vdots \\\\
&+ \, \left(44000 + \frac{1000000000000000000000000000000}{270966174450725282733813987}\right)\left(\frac{1}{1.027^8}\right)\\\\
\end{align}
This is, at last, equivalent to the present value of an annuity of length $9$ years.
The present value is:
$$PV \, = \, \frac{13271419491079374076175586444556000}{7316086710169582633812977649} \, \approx \, \$ 1\text{,}814\text{,}005.22\, $$
This calculation assumes that the first payment occurs right now.
If, instead, the first payment of $\$44000$ occurs one year from now, then every term is discounted by an additional factor of $\frac{1}{1.027}$. In that case, the present value is:
$$PV \, = \, \frac{12922511675831912440287815428000000}{7316086710169582633812977649} \, \approx \, \boxed{ \, \$ 1\text{,}766\text{,}314.72\, }$$