Let $G=\Bbb Z_{p_1^{\alpha_1}}\times \dots \times \Bbb Z_{p_n^{\alpha_n}}$ be listed as $G=\{a_1,\dots,a_k\}$, where:
- $p_1\dots,p_n$ are primes;
- $\alpha_1,\dots,\alpha_n$ are nonnegative integers;
- $k:=\prod_{i=1}^np_i^{\alpha_i}$.
As an example, let's take:
\begin{alignat}{1} \Bbb Z_{2^2} \times \Bbb Z_3\times \Bbb Z_{2}= &\{(0,0,0),(0,1,0),(0,2,0),(1,0,0),(1,1,0),(1,2,0),\\ &(2,0,0),(2,1,0),(2,2,0),(3,0,0),(3,1,0),(3,2,0),\\ &(0,0,1),(0,1,1),(0,2,1),(1,0,1),(1,1,1),(1,2,1),\\ &(2,0,1),(2,1,1),(2,2,1),(3,0,1),(3,1,1),(3,2,1)\} \\ \end{alignat}
Then we get:
\begin{alignat}{1} \sum_{i=1}^{24}a_i &= \bigl(3\cdot 2\cdot(0+1+2+3),\space\space 2^2\cdot2\cdot (0+1+2)),\space\space 2^2\cdot 3\cdot (0+1)\bigr) \\ &= \biggl(3\cdot 2\cdot\sum_{i=0}^{2^{2}-1}i,\space\space 2^2\cdot2\cdot\sum_{i=0}^{3-1}i,\space\space 2^2\cdot 3\cdot \sum_{i=0}^{2-1}i\biggr) \\ \end{alignat}
This suggests the following:
Claim. Let $G=\Bbb Z_{p_1^{\alpha_1}}\times \dots \times \Bbb Z_{p_n^{\alpha_n}}$ be listed as $G=\{a_1,\dots,a_k\}$, where $k:=\prod_{i=1}^np_i^{\alpha_i}$. Then:
\begin{alignat}{1} \sum_{i=1}^{k}a_i= \biggl(p_2^{\alpha_2}\dots p_n^{\alpha_n}\sum_{i=0}^{p_1^{\alpha_1}-1}i,\space\space\dots,\space\space p_1^{\alpha_1}\dots p_{n-1}^{\alpha_{n-1}}\sum_{i=0}^{p_n^{\alpha_n}-1}i\biggr) \\ \tag 1 \end{alignat}
I've tried to prove $(1)$ by induction on $(\alpha_1,\dots,\alpha_n)$. The claim holds for $(\alpha_1,\dots,\alpha_n)=(0,\dots,0)$; in fact, in this case $k=1$ and $G=\{a_1\}=\{(\underbrace{0,\dots,0}_{n\space slots})\}$, whence:
\begin{alignat}{1} \sum_{i=1}^{k}a_i= a_1=(\underbrace{0,\dots,0}_{n\space slots}) \end{alignat}
and
\begin{alignat}{1} &\biggl(p_2^{\alpha_2}\dots p_n^{\alpha_n}\sum_{i=0}^{p_1^{\alpha_1}-1}i,\space\space\dots,\space\space p_1^{\alpha_1}\dots p_{n-1}^{\alpha_{n-1}}\sum_{i=0}^{p_n^{\alpha_n}-1}i\biggr)= \\ &\biggl(1\dots 1\sum_{i=0}^{0}i,\space\space\dots,\space\space 1\dots 1\sum_{i=0}^{0}i\biggr)= \\ &(1\dots 1\cdot 0,\space\space\dots,\space\space 1\dots 1\cdot 0)= \\ &(\underbrace{0,\dots,0}_{n\space slots}) \\ \end{alignat}
As inductive step, I've assumed $(1)$ to hold for $\{\alpha_1,\dots,\alpha_{j-1},\alpha_j,\alpha_{j+1},\dots,\alpha_n\}$ and checked what happens for $\{\alpha_1,\dots,\alpha_{j-1},\alpha_j+1,\alpha_{j+1},\dots,\alpha_n\}$, for an arbitrary $j\in\{1,\dots,n\}$. This is where I get stuck, and I don't know whether I get lost in the algebra, or I'm applying induction incorrectly, or simply the claim is false.