Let :
- $X$ and $Y$ be two independent exponential distributions of parameter $\lambda$
- $T=X-Y$
- $Z =\min(X,Y)$
We want to show that $T$ and $Z$ are independant, without any memoryless property.
My attempt :
$ \begin{align*} f_{T}(s) & = \int_{ \mathbb{ R} }^ {} f_X(s-u) f_{-Y}( u) du \\ &= \int_{ \mathbb{ R} }^ {} e^{ - \lambda (s-u) } e^{ - \lambda u} \mathbb{1}_{ s-u \geq 0} \mathbb{1}_{ u \leq 0} \\ & = e^{ - \lambda s } \int_{ \mathbb{ R} }^ {} e^{ 2 \lambda u} \mathbb{1}_{ u \leq (0 \wedge s)} \\ & = \frac{1} {2} e^{ - \lambda (2 (0 \wedge s) -s )} \\ &= \frac{1} {2} e^{ - \lambda |s|} \\ \end{align*} $
$f_Z(z)= 2 e^{- 2 \lambda z}$
$ \begin{cases} X-Y <t & \\ \min(X,Y) <z\\ \end{cases} \iff \begin{cases} X<t+Y & \\ \{ \min(X,Y) <z, Y \leq Z \} \cup \{ \min(X,Y) <z, Y \geq Z \} \\ \end{cases} \iff \begin{cases} \{ X< Y+t ,Y \leq Z \} \cup \\ \{ X<z, Y \geq z \} \\ \end{cases} $
For $t>0$ and $z>0$ $ \begin{align*} F_W(t,z)&= P(T<t,Z \leq z) \\ &= \int \int \mathbb{1}_{(X-Y) <t , \min(X,Y) <z } dP \\ &= \int_{0}^{z} \int_{0}^{y+t} f_X(x) dx f_Y(y) dy + \int_{z}^{ + \infty} \int_{0}^{z} f_X(x) dx ) f_Y(y) dy \\ \end{align*} $
For $t>0$ and $z>0$, $F_{Z,T}(z,t) =1 - \frac{1}{2} e^{-t}(1- e^{-2z}) - e^{ -2 z} $
For $z >0$ and $t<0$, $ Y \geq X-t$ and $X \leq z$, therefore,
$ \begin{align*} F_W(t,z) &= \int_{0}^{z} \lambda e^{ - \lambda x} ( \int_{x-t}^{ + \infty} \lambda e^{ - \lambda y } dy ) dx \\ &=\int_{0}^{z} \lambda e^{ - \lambda x} e^{ - \lambda (x-t)} \\ &=e^{ \lambda t} \frac{1}{2} (1- e^{ - 2 \lambda z })\\ \end{align*} $