Work in progress. We can conclude that $(nx_n)_{n\in\mathbb{N}}$ converges ...
Using induction we can show that $x_n \geq 0$ and, thus, $nx_n\geq0$.
Function $\sin{x}\geq0$, for $x\in\left[0,\frac{\pi}{2}\right]$. As a result $\sin{x_2}>0$ and
$$0\leq x_3=\frac{\sin{x_2}}{2}\leq 1<\frac{\pi}{2} \Rightarrow x_3\in\left[0,\frac{\pi}{2}\right]$$
And using the induction hypothesis for $x_n\in \left[0,\frac{\pi}{2}\right]$
$$0\leq x_{n+1}=\left(1-\frac{1}{n}\right)\sin{x_n}\leq 1<\frac{\pi}{2} \Rightarrow x_{n+1}\in\left[0,\frac{\pi}{2}\right]$$
From
$$|x_{n+1}|=
\left|1-\frac{1}{n}\right||\sin{x_n}|\leq
\left|1-\frac{1}{n}\right||x_n|\leq \\
\left|1-\frac{1}{n}\right|\left|1-\frac{1}{n-1}\right||\sin{x_{n-1}}|\leq ... \\
\leq \left|1-\frac{1}{n}\right|\left|1-\frac{1}{n-1}\right|\left|1-\frac{1}{n-2}\right|...\left|1-\frac{1}{2}\right||\sin{x_2}|=\frac{|\sin{x_2}|}{n}$$
Thus
$$|(n+1)x_{n+1}|\leq \left(1+\frac{1}{n}\right)|\sin{x_2}|$$
and $(nx_n)_{n\in\mathbb{N}}$ is bounded.
Now:
$$0\leq \frac{(n+1)x_{n+1}}{nx_{n}}=\left(1+\frac{1}{n}\right)\left(1-\frac{1}{n}\right) \frac{\sin{x_n}}{x_n} \leq 1-\frac{1}{n^2}<1$$
and $(nx_n)_{n\in\mathbb{N}}$ is descending.
def x(n): return (1-1/n)*math.sin(x(n-1)) if n >= 3 else 0.5
andn*x(n)
for $n = 100,500$ and $995$. I got0.9064076753543608
,0.9054104297085305
and0.9052871869587333
respectively. – GNUSupporter 8964民主女神 地下教會 Dec 21 '20 at 13:17