Not a 'real' answer, but it was too big for a comment. I know that you're looking for a solution without using a calculator or PC but maybe this gives some insight.
I wrote and ran some Mathematica-code:
In[1]:=Clear["Global`*"];
ParallelTable[
If[TrueQ[1 <= m < n &&
Last@IntegerDigits[1978^n] == Last@IntegerDigits[1978^m] &&
Part[IntegerDigits[1978^n], 1 + Floor[Log10[1978^n]] - 1] ==
Part[IntegerDigits[1978^m], 1 + Floor[Log10[1978^m]] - 1] &&
Part[IntegerDigits[1978^n], 1 + Floor[Log10[1978^n]] - 2] ==
Part[IntegerDigits[1978^m], 1 + Floor[Log10[1978^m]] - 2]], {m,
n, m + n}, Nothing], {n, 1, 200}, {m, 1, 200}] //. {} -> Nothing
Running the code gives:
Out[1]={{{3, 103, 106}}, {{4, 104, 108}}, {{5, 105, 110}}, {{6, 106,
112}}, {{7, 107, 114}}, {{8, 108, 116}}, {{9, 109, 118}}, {{10,
110, 120}}, {{11, 111, 122}}, {{12, 112, 124}}, {{13, 113,
126}}, {{14, 114, 128}}, {{15, 115, 130}}, {{16, 116, 132}}, {{17,
117, 134}}, {{18, 118, 136}}, {{19, 119, 138}}, {{20, 120,
140}}, {{21, 121, 142}}, {{22, 122, 144}}, {{23, 123, 146}}, {{24,
124, 148}}, {{25, 125, 150}}, {{26, 126, 152}}, {{27, 127,
154}}, {{28, 128, 156}}, {{29, 129, 158}}, {{30, 130, 160}}, {{31,
131, 162}}, {{32, 132, 164}}, {{33, 133, 166}}, {{34, 134,
168}}, {{35, 135, 170}}, {{36, 136, 172}}, {{37, 137, 174}}, {{38,
138, 176}}, {{39, 139, 178}}, {{40, 140, 180}}, {{41, 141,
182}}, {{42, 142, 184}}, {{43, 143, 186}}, {{44, 144, 188}}, {{45,
145, 190}}, {{46, 146, 192}}, {{47, 147, 194}}, {{48, 148,
196}}, {{49, 149, 198}}, {{50, 150, 200}}, {{51, 151, 202}}, {{52,
152, 204}}, {{53, 153, 206}}, {{54, 154, 208}}, {{55, 155,
210}}, {{56, 156, 212}}, {{57, 157, 214}}, {{58, 158, 216}}, {{59,
159, 218}}, {{60, 160, 220}}, {{61, 161, 222}}, {{62, 162,
224}}, {{63, 163, 226}}, {{64, 164, 228}}, {{65, 165, 230}}, {{66,
166, 232}}, {{67, 167, 234}}, {{68, 168, 236}}, {{69, 169,
238}}, {{70, 170, 240}}, {{71, 171, 242}}, {{72, 172, 244}}, {{73,
173, 246}}, {{74, 174, 248}}, {{75, 175, 250}}, {{76, 176,
252}}, {{77, 177, 254}}, {{78, 178, 256}}, {{79, 179, 258}}, {{80,
180, 260}}, {{81, 181, 262}}, {{82, 182, 264}}, {{83, 183,
266}}, {{84, 184, 268}}, {{85, 185, 270}}, {{86, 186, 272}}, {{87,
187, 274}}, {{88, 188, 276}}, {{89, 189, 278}}, {{90, 190,
280}}, {{91, 191, 282}}, {{92, 192, 284}}, {{93, 193, 286}}, {{94,
194, 288}}, {{95, 195, 290}}, {{96, 196, 292}}, {{97, 197,
294}}, {{98, 198, 296}}, {{99, 199, 298}}, {{100, 200, 300}}}
So, we can see that the lowest number it found is $\text{m}=3$ and $\text{n}=103$ such that $\text{m}+\text{n}=106$. This is true because:
In[2]:=1978^(3)
Out[2]=7738893352
In[3]:=1978^(103)
Out[3]=3245694113774954778728642579697330790826430286814377973924914348349172
1776912127907693002626855998102667117472974423953886955433471331120533
2387497964129735391536809964330889620953818913346685089195593781962547
1616597048762535229892714999678772716316673743259286605339715498711285
462611923097914966231058794697896139243678438050112682852352