If $\space a,b \in \mathbb{N}$ ,then calculate the limit $$\lim_{x\to1} \space\space \space \dfrac{a}{1-x^{a}}-\dfrac{b}{1-x^{b}}$$ and hence find $$ \lim_{x\to1} \space\space \space \dfrac{40}{1-x^{40}}-\dfrac{30}{1-x^{30}}$$
My approach: simplified
$\lim_{x\to1} \space\space \space \dfrac{40}{1-x^{40}}-\dfrac{30}{1-x^{30}}$
to $\lim_{x\to1} \space\space \space \dfrac{5}{1-x^{5}}-\dfrac{15}{1-x^{15}}$
Unable to solve further. and also not able to generalize the result.
Any help would be appreciated .
THANKS!