- Caclulate the characteristic & the minimal polynomial of the matrix:
$$A\in\mathbb C^{n\times n}:a_{ij}=i\cdot j ,\forall i,j=1,..,n$$
$$\text{i.e for $n=3$, } $$ $$A=\left[\begin{matrix}1 & 2 & 3\\2 & 4 & 6\\3 & 6 & 9\end{matrix}\right]$$
$$\text{I've calculate $X_A(x),m_A(x)$ for the following cases:}$$
$$ \left[\begin{matrix}1 & 2\\2 & 4\end{matrix}\right], \quad \left[\begin{matrix}1 & 2 & 3\\2 & 4 & 6\\3 & 6 & 9\end{matrix}\right], \quad \left[\begin{matrix}1 & 2 & 3 & 4\\2 & 4 & 6 & 8\\3 & 6 & 9 & 12\\4 & 8 & 12 & 16\end{matrix}\right], \quad \left[\begin{matrix}1 & 2 & 3 & 4 & 5\\2 & 4 & 6 & 8 & 10\\3 & 6 & 9 & 12 & 15\\4 & 8 & 12 & 16 & 20\\5 & 10 & 15 & 20 & 25\end{matrix}\right], \quad \left[\begin{matrix}1 & 2 & 3 & 4 & 5 & 6\\2 & 4 & 6 & 8 & 10 & 12\\3 & 6 & 9 & 12 & 15 & 18\\4 & 8 & 12 & 16 & 20 & 24\\5 & 10 & 15 & 20 & 25 & 30\\6 & 12 & 18 & 24 & 30 & 36\end{matrix}\right]$$
$$\xrightarrow{X_A(x)} \left [ x \left(x - 5\right), \quad - x^{2} \left(x - 14\right), \quad x^{3} \left(x - 30\right), \quad - x^{4} \left(x - 55\right), \quad x^{5} \left(x - 91\right)\right ]$$
$$\xrightarrow{m_A(x)} \left [ x \left(x - 5\right), \quad x \left(x - 14\right), \quad x \left(x - 30\right), \quad x \left(x - 55\right), \quad x \left(x - 91\right)\right ]$$
$$\text{Hence, i assumed that if }A\in\mathbb{C}^{n\times n}:$$ $$\fbox{$X_A(x)=(-1)^nx^{n-1}\big( x-\operatorname{tr}(A)\big)$},$$ $$\fbox{$m_A(x)=x\big( x-\operatorname{tr}(A)\big)$} .$$
How can i prove this in general case?
any suggestions?