Let $X_1,\ldots,X_n$ be a sequence of i.i.d Gaussian with mean $0$ and variance $\frac1n$, i.e. $X_i \sim\mathcal{N}(0,\frac{1}{n})$. What is the limit behavior of $Z=\max_i X_i$.
like $\lim_{n\rightarrow \infty} \frac{Z}{n^\alpha (\log n)^\beta}=C$ for some $\alpha $, $\beta$ and $C>0$