I'm unable to solve the following limit: $$\lim_{x \to 0+}\frac{\sin( x \sqrt x )-x \sqrt x}{x\sqrt{x+1}}$$
My attempt: Using L'Hospital rule: $$\frac{ \cos( x \sqrt x ) \frac{3}{2} \sqrt x - \frac{3}{2} \sqrt x } { \sqrt{x+1} + x \frac{1}{2\sqrt{x+1}} }$$ $$\frac{\sqrt{x+1} (\cos( x \sqrt x ) \frac{3}{2} \sqrt x - \frac{3}{2} \sqrt x)}{2x+1}$$ Since $(\sqrt x)'=\frac{1}{2\sqrt x}$ we can see that we will get $\frac{0}{0}$ when $x \to 0$ if my calculations are right.