I need help to prove this: If $\gcd(a,b)=1$ then $\gcd(a+b, a^2-ab+b^2)$ is equal to $1$ or $3$. I have done this:
Let $d$ be the g.c.d. of $(a+b, a^2-ab+b^2)$, then $d$ divides $a+b$ and $d$ divides $a^2-ab+b^2$. That implies $d$ divides $(a+b)n + (a^2-ab+b^2)m$, for some $n,m$ integers. Let $n$ and $m$ be $a$ and $1$ respectively, then $d$ divides $2a^2+ b$. With the same argument but with $n=b$ we get $d$ divides $a^2+2b$. Then $d$ divides $3a^2+3b^2$. That implies $3a^2+3b^2 \geq d$, and we get that $3 \geq d$, because $\gcd(a^2+b^2)=1$. So $d$ must be $3$ or $1$ because if $d =2$, $d$ has to divide $a^2+2b$ and $2a^2+ b$, but we see that no. So $d=3$ or $1$. I don't know if I did it well.