2

Good morning,

We have : $g \in$ $L^{p}(\mathbb{R}^n)$, $\forall p \in [0;\infty)$ and $f\in$ $L^{1}(\mathbb{R}^n)$, $\widehat{f}(x) =0$ if $|x| \geq R $, $\varphi = \widehat{g}$ such as $\varphi(x) = 1, \left | x \right | \leqslant R $ and $ x \in \mathbb{R}^n$, $\varphi\in {C_{c}^{\infty }(\mathbb {R} ^{n})}$

So I did a Fourier Transform of $\ f*g$ (Convolution product) and got $\widehat{f*g}(x)=\widehat{f}$ How can I say that $\ f*g = f$ with what I found ?

Thank you in advance !

1 Answers1

1

The Fourier transform is injective (in the relevant function spaces). If $\hat h=\hat f$, then $h=f$. Now you have $h=f*g$.