2

Find the radius of convergence and the sum of the series: $\sum \limits_{k=0}^\infty (2k^2+8k+5)x^k$.
I know how to find the radius of convergence but I have no idea how to calculate the sum of the series. Where do I begin? Thanks.

2 Answers2

4

Hints:

For example,

$$f(x)=\sum_{k=0}^\infty x^k\,,\,\,|x|<1\implies f'(x)=\sum_{k=1}^\infty kx^{k-1}\implies f''(x)=\sum_{k=2}^\infty k(k-1)x^{k-2}\implies$$

$$f''(x)=\sum_{k=2}^\infty k^2x^{k-2}-\sum_{k=1}^\infty kx^{k-1}$$

but we know

$$f(x)=\frac1{1-x}\implies f'(x)=\frac1{(1-x)^2}\;\;\ldots\text{ and etc.}$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287
2

Hint:

You can rewrite the sums as \begin{align} \sum_{k=0}^\infty 8k x^{k}&=8x\sum_{k=0}^\infty k x^{k-1},\\[1ex] \sum_{k=0}^\infty 2k^2x^k&=2x^2\sum_{k=0}^\infty k(k-1)x^{k-2}+2x\sum_{k=0}^\infty kx^{k-1}, \end{align} whence $$\sum \limits_{k=0}^\infty (2k^2+8k+5)x^k=2x^2\sum_{k=0}^\infty k(k-1)x^{k-2}+10x\sum_{k=0}^\infty kx^{k-1}+5\sum_{k=0}^\infty x^{k}.$$

Bernard
  • 175,478