Notice that $T(n,k)=\sum_{i=0}^k T(n-1,k-i)$ is the same as $T(n,k)=\sum_{i=0}^k T(n-1,i)$
Using the recursive definition:
$$T(3,k)=T(2,0)+T(2,1)+\dots+T(2,k)=1+2+\dots+(k+1)=\frac{(k+1)(k+2)}2\\ T(4,k)=T(3,0)+T(3,1)+\dots+T(3,k)=\sum_{i=0}^k\frac{(i+1)(i+2)}2=\frac{(k+1)(k+2)(k+3)}6\\\vdots$$
By induction on $n$, you can show that $$T(n,k)=\dfrac{(k+1)(k+2)\cdots (k+(n-1))}{(n-1)!}=\dbinom{k+n-1}{n-1}$$
Proof sketch:
Show that the base case holds ($n=2$ by the given initial condition)
Assume the inductive hypothesis, ie, $T(n,k)=\dbinom{k+n-1}{n-1}$
Now, for the inductive step, note that,
$$\begin{align}T(n+1,k)\overset{(\#)}{=}\sum_{i=0}^k T(n,i)=\sum_{i=0}^k\binom{n-1+i}{n-1}&\overset{(\ast)}{=}\binom{(n-1)+(k+1)}n \\&=\binom{n+k}n\\&=\binom{k+(n+1)-1}{(n+1)-1}\end{align}$$
where the step $(\#)$ is using the given recurrence relation and the step $(\ast)$ follows by the hockey-stick identity.