How can you show that $I=J=\phi^{-2}$
Where $\phi=\frac{\sqrt{5}+1}{2}$ $$I=\int_{-\infty}^{+\infty}\frac{\sin^2(x\ln\phi)+\sin^2(3x\ln\phi)}{4x^4+5x^2+1}\mathrm dx$$
$$J=\int_{-\infty}^{+\infty}\frac{\sin^2(4x\ln\phi)}{4x^4+5x^2+1}\mathrm dx$$
I don't think there are such formulas to represent $\sin^2(a)+\sin^2(b)=\sin^2(c)$
$$I=\int_{-\infty}^{+\infty}\frac{\sin^2(x\ln\phi)+\sin^2(3x\ln\phi)}{4x^4+5x^2+1}\mathrm dx=\int_{-\infty}^{+\infty}\frac{\sin^2(x\ln\phi)+\sin^2(3x\ln\phi)}{(4x^2+1)(x^2+1)}\mathrm dx$$
$$I=\int_{-\infty}^{+\infty}\frac{4\sin^2(x\ln\phi)+4\sin^2(3x\ln\phi)}{3(4x^2+1)}\mathrm dx-\int_{-\infty}^{+\infty}\frac{\sin^2(x\ln\phi)+\sin^2(x\ln\phi)}{3(x^2+1)}\mathrm dx$$
In general we got evalaute, $$K=\int_{-\infty}^{+\infty}\frac{\sin^2(ax\ln\phi)}{bx^2+c}\mathrm dx$$
$\sin^2(a)=\frac{1-\cos(2a)}{2}$
$$K=\frac{1}{2}\int_{-\infty}^{+\infty}\frac{1-\cos(2ax\ln\phi)}{bx^2+c}\mathrm dx=\frac{\pi}{2b}\sqrt{\frac{b}{c}}-\frac{1}{2}\int_{-\infty}^{+\infty}\frac{\cos(2ax\ln\phi)}{bx^2+c}\mathrm dx$$