This is equations of motion in $3D:$ How can we numerically solve this system of the equations? (preferably Euler). can you give a sample of $2$ step sizes how is it possible?
$\frac{d^2x}{dt^2} = -vk_d\frac{dx}{dt} + vk_l\frac{dy}{dt}$
$\frac{d^2y}{dt^2} = -vk_d\frac{dy}{dt} - vk_l\frac{dx}{dt}$
$\frac{d^2z}{dt^2} = -vk_d\frac{dz}{dt} - g$
$v = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 +(\frac{dz}{dt})^2}$
$g, k_d, k_l$ are constants.
step size = $0.01$ sec = $t$
Intial Conditions:
x,y,z = 0
$\frac{dx}{dt}=10.45$
$\frac{dy}{dt}=5.45$
$\frac{dz}{dt}=33.45$
$v_0=25$